cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A084895 Decimal expansion of agm(1, 3), the arithmetic-geometric mean of 1 and 3.

Original entry on oeis.org

1, 8, 6, 3, 6, 1, 6, 7, 8, 3, 2, 4, 4, 8, 9, 6, 5, 4, 2, 3, 5, 5, 6, 8, 9, 0, 3, 1, 0, 2, 4, 2, 7, 0, 5, 9, 5, 1, 5, 7, 5, 3, 2, 8, 5, 6, 8, 2, 6, 8, 5, 3, 7, 2, 2, 2, 2, 0, 4, 4, 1, 2, 2, 6, 9, 7, 8, 3, 2, 5, 7, 9, 4, 5, 7, 9, 3, 5, 7, 2, 2, 3, 4, 1, 2, 7, 7, 7, 7, 9, 6, 6, 1, 4, 7, 2, 7, 7, 0, 9, 8, 4
Offset: 1

Views

Author

Eric W. Weisstein, Jun 10 2003

Keywords

Examples

			1.8636167832448965423556890310242705951575328568268537222204412269783257945...
		

Crossrefs

Cf. A068521 (agm(1,2)), A084896 (agm(1,4)), A084897 (agm(1,5)), A000796, A249282.

Programs

Formula

Equals Pi/EllipticK(1/4) = A000796 / A249282. - Amiram Eldar, Apr 28 2025

A084896 Decimal expansion of agm(1,4), the arithmetic-geometric mean of 1 and 4.

Original entry on oeis.org

2, 2, 4, 3, 0, 2, 8, 5, 8, 0, 2, 8, 7, 6, 0, 2, 5, 7, 0, 1, 2, 7, 8, 0, 2, 1, 9, 2, 8, 2, 9, 0, 6, 6, 5, 4, 0, 5, 0, 8, 9, 7, 3, 1, 4, 2, 4, 0, 6, 6, 0, 9, 9, 7, 5, 9, 1, 8, 8, 2, 3, 7, 0, 1, 3, 8, 7, 4, 0, 4, 8, 0, 4, 2, 2, 8, 9, 9, 9, 5, 7, 2, 2, 4, 1, 1, 1, 5, 0, 5, 9, 0, 9, 4, 1, 9, 5, 0, 2, 1, 8, 5
Offset: 1

Views

Author

Eric W. Weisstein, Jun 10 2003

Keywords

Crossrefs

Cf. A068521 (agm(1,2)), A084895 (agm(1,3)), A084897 (agm(1,5)).

Programs

Formula

2.2430285802876025701278021928290665405089731424066099759188237013874048...

A084897 Decimal expansion of agm(1,5), the arithmetic-geometric mean of 1 and 5.

Original entry on oeis.org

2, 6, 0, 4, 0, 0, 8, 1, 9, 0, 5, 3, 0, 9, 4, 0, 2, 8, 8, 6, 9, 6, 4, 2, 7, 4, 4, 8, 7, 2, 5, 0, 3, 4, 3, 3, 0, 9, 2, 7, 0, 6, 5, 2, 5, 5, 6, 3, 7, 6, 4, 9, 4, 8, 7, 7, 4, 8, 4, 1, 3, 2, 5, 4, 4, 5, 5, 6, 7, 9, 2, 8, 0, 5, 6, 8, 5, 1, 8, 5, 2, 6, 9, 5, 6, 1, 2, 1, 1, 1, 6, 8, 5, 4, 3, 2, 8, 8, 5, 5, 4, 4
Offset: 1

Views

Author

Eric W. Weisstein, Jun 10 2003

Keywords

Examples

			2.6040081905309402886964274487250343309270652556376494877484132544556792805685...
		

Crossrefs

Cf. A068521 (agm(1,2)), A084895 (agm(1,3)), A084896 (agm(1,4)).

Programs

A370543 Expansion of the Jacobi elliptic function cn(x,k) at k = 2 (even powers only).

Original entry on oeis.org

1, -1, 17, -433, 20321, -1584289, 179967473, -28151779537, 5812048858049, -1529741412486721, 499975227342256337, -198676311845589783793, 94327947921149101192481, -52736138158762405338195169, 34291374178966525773142501553, -25660133983889999165774819970577
Offset: 0

Views

Author

Paul D. Hanna, Mar 25 2024

Keywords

Examples

			E.g.f.: C(x) = 1 - x^2/2! + 17*x^4/4! - 433*x^6/6! + 20321*x^8/8! - 1584289*x^10/10! + 179967473*x^12/12! - 28151779537*x^14/14! + ...
where C(x) = cn(x,2).
		

References

  • H. S. Wall, Analytic Theory of Continued Fractions, Chelsea 1973, p. 374.

Crossrefs

Cf. A028296 (cn(x,1)), A060627 (cn(x,k)).
Cf. A370542 (sn(x,2)), A370544 (dn(x,2)), A249282.

Programs

  • Maple
    # a(n) = (2*n)! * [x^(2*n)] cn(x, 2).
    cn_list := proc(k, len) local n; seq((2*n)!*coeff(series(JacobiCN(z, k), z,
    2*len + 2), z, 2*n), n = 0..len) end:
    cn_list(2, 15);  # Peter Luschny, Mar 25 2024
  • Mathematica
    nmax = 20;
    DeleteCases[CoefficientList[JacobiCN[x, 4] + O[x]^(2*nmax+2), x], 0]* (2*Range[0, nmax])! (* Jean-François Alcover, Mar 28 2024 *)
  • PARI
    /* C(x) = Jacobi Elliptic Function cn(x,k) at k = 2: */
    {a(n) = my(k=2,C=1,S=x,D=1); for(i=1,n,
    S = intformal(C*D + x*O(x^(2*n+1)));
    C = 1 - intformal(S*D);
    D = 1 - k^2*intformal(S*C)); (2*n)!*polcoeff(C,2*n)}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) = (-1)^n * Sum_{k=0..n-1} A060627(n,k)*4^k for n >= 1, with a(0) = 1.
E.g.f. C(x) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)! satisfies the following formulas, where sn, cn, and dn are Jacobi elliptic functions.
(1) C(x) = cn(x,k) at k = 2.
(2.a) C(x) = dn(2*x, 1/2).
(2.b) C(x) = (4 - 2*sn(x,1/2)^2 + sn(x,1/2)^4) / (4 - sn(x,1/2)^4).
(3) C(x) = 1 - Integral sqrt(1 - C(x)^2) * sqrt(4*C(x)^2 - 3) dx.
(4) C(x) = cos( Integral sqrt(4*C(x)^2 - 3) dx ).
(5.a) C(x) = sqrt(1 - sn(x,2)^2).
(5.b) C(x) = sqrt(3 + dn(x,2)^2) / 2.
O.g.f.: 1/(1 + x/(1 + 4*2^2*x/(1 + 3^2*x/(1 + 4*4^2*x/(1 + 5^2*x/(1 + 4*6^2*x/(1 + 7^2*x/(1 + ...)))))))) = 1 - x + 17*x^2 - 433*x^3 + 20321*x^4 - 1584289*x^5 + ... (continued fraction, see Wall, 94.18, p. 374). - [See formula in A060627 by Peter Bala, Apr 25 2017].
a(n) ~ (-1)^n * 2^(4*n+2) * agm(1,2)^(2*n+1) * n^(2*n + 1/2) / (Pi^(2*n + 1/2) * exp(2*n)), where agm(1,2) = A068521 is the arithmetic-geometric mean. - Vaclav Kotesovec, Mar 28 2024

A249283 Decimal expansion of K(3/4), where K is the complete elliptic integral of the first kind.

Original entry on oeis.org

2, 1, 5, 6, 5, 1, 5, 6, 4, 7, 4, 9, 9, 6, 4, 3, 2, 3, 5, 4, 3, 8, 6, 7, 4, 9, 9, 8, 8, 0, 0, 3, 2, 2, 0, 2, 8, 8, 6, 4, 1, 1, 0, 2, 1, 6, 4, 9, 2, 8, 2, 5, 3, 6, 0, 3, 6, 4, 9, 5, 8, 9, 1, 6, 5, 0, 0, 9, 6, 1, 6, 4, 4, 2, 2, 0, 6, 5, 6, 2, 8, 7, 6, 3, 4, 9, 6, 7, 8, 7, 5, 7, 8, 1, 4, 4, 5, 9, 0, 2, 5, 5
Offset: 1

Views

Author

Jean-François Alcover, Oct 24 2014

Keywords

Examples

			2.15651564749964323543867499880032202886411021649282536...
		

Crossrefs

Cf. A093341 (K(1/2)), A249282 (K(1/4)), A000796, A068521.

Programs

Formula

Equals Pi/agm(1, 2) = A000796 / A068521. - Amiram Eldar, Apr 28 2025

A370542 Expansion of the Jacobi elliptic function sn(x,k) at k = 2 (odd powers only).

Original entry on oeis.org

1, -5, 73, -2765, 171409, -16145045, 2168436697, -391723265885, 91633164775201, -26955095234906405, 9737498127795037033, -4237907290209405609965, 2187044171819241257792689, -1320533769141977996485790645, 922274662722967857470247551737, -737730926392606318468533810754685
Offset: 0

Views

Author

Paul D. Hanna, Mar 23 2024

Keywords

Examples

			E.g.f.: S(x) = x - 5*x^3/3! + 73*x^5/5! - 2765*x^7/7! + 171409*x^9/9! - 16145045*x^11/11! + 2168436697*x^13/13! - 391723265885*x^15/15! + ...
where S(x) = sn(x,2).
		

References

  • H. S. Wall, Analytic Theory of Continued Fractions, Chelsea 1973, p. 374.

Crossrefs

Cf. A000182 (unsigned sn(x,1)), A060628 (sn(x,k)).
Cf. A370543 (cn(x,2)), A370544 (dn(x,2)), A249282.

Programs

  • Maple
    # a(n) = (2*n+1)! * [x^(2*n+1)] sn(x, 2).
    sn_list := proc(k, len) local n; seq((2*n+1)!*coeff(series(JacobiSN(z, k), z,
    2*len + 2), z, 2*n + 1), n = 0..len) end:
    sn_list(2, 15);  # Peter Luschny, Mar 25 2024
  • Mathematica
    nmax = 20;
    DeleteCases[CoefficientList[JacobiSN[x, 4] + O[x]^(2*nmax+2), x], 0]* (2*Range[0, nmax] + 1)! (* Jean-François Alcover, Mar 28 2024 *)
  • PARI
    /* S(x) = Jacobi Elliptic Function sn(x,k) at k = 2: */
    {a(n) = my(S, k = 2); S = serreverse( intformal( 1/sqrt((1-x^2)*(1-k^2*x^2 +x*O(x^(2*n+2)) ) ) ));
    (2*n+1)!*polcoeff(S,2*n+1)}
    for(n=0,20, print1( a(n), ", ") );

Formula

a(n) = (-1)^n * Sum_{k=0..n} A060628(n,k)*4^k for n >= 0.
E.g.f. S(x) = Sum_{n>=0} a(n)*x^(2*n+1)/(2*n+1)! satisfies the following formulas, where sn, cn, and dn are Jacobi elliptic functions.
(1) S(x) = sn(x,k) at k = 2.
(2.a) S(x) = sn(2*x,1/2)/2.
(2.b) S(x) = sn(x,1/2) * cn(x,1/2) * dn(x,1/2) / (1 - sn(x,1/2)^4/4).
(3.a) S(x) = Series_Reversion( Integral 1/sqrt( (1-x^2)*(1-4*x^2) ) dx ).
(3.b) S(x) = Integral sqrt(1 - S(x)^2) * sqrt(1 - 4*S(x)^2) dx.
(4.a) S(x) = sin( Integral sqrt(1 - 4*S(x)^2) dx ).
(4.b) S(x) = sin( 2 * Integral sqrt(1 - S(x)^2) dx ) / 2.
(5.a) S(x) = sqrt(1 - cn(x,2)^2).
(5.b) S(x) = sqrt(1 - dn(x,2)^2) / 2.
O.g.f.: x/(1 + 5*x - 4*1*2^2*3*x^2/(1 + 5*3^2*x - 4*3*4^2*5*x^2/(1 + 5*5^2*x - 4*5*6^2*7*x^2/(1 + 5*7^2*x - 4*7*8^2*9*x^2/(1 + 5*9^2*x - ...))))) = x - 5*x^2 + 73*x^3 - 2765*x^4 + 171409*x^5 - 16145045*x^6 + ... (continued fraction, see Wall, 94.17, p. 374).
a(n) ~ (-1)^n * 2^(4*n+4) * agm(1,2)^(2*n+2) * n^(2*n + 3/2) / (Pi^(2*n + 3/2) * exp(2*n)), where agm(1,2) = A068521 is the arithmetic-geometric mean. - Vaclav Kotesovec, Mar 28 2024

A370544 Expansion of the Jacobi elliptic function dn(x,k) at k = 2 (even powers only).

Original entry on oeis.org

1, -4, 32, -832, 41216, -3168256, 359518208, -56319950848, 11624409595904, -3059387770077184, 999955757611876352, -397353151288859164672, 188655750511199441125376, -105472284295853235792510976, 68582751548430569936978444288, -51320267059211655419226235076608
Offset: 0

Views

Author

Paul D. Hanna, Mar 25 2024

Keywords

Examples

			E.g.f.: D(x) = 1 - 4*x^2/2! + 32*x^4/4! - 832*x^6/6! + 41216*x^8/8! - 3168256*x^10/10! + 359518208*x^12/12! - 56319950848*x^14/14! + ...
where D(x) = dn(x,2).
		

References

  • H. S. Wall, Analytic Theory of Continued Fractions, Chelsea 1973, p. 374.

Crossrefs

Cf. A028296 (dn(x,1)), A060627 (cn(x,k)).
Cf. A370542 (sn(x,2)), A370543 (cn(x,2)), A249282.

Programs

  • Maple
    # a(n) = (2*n)! * [x^(2*n)] dn(x, 2).
    dn_list := proc(k, len) local n; seq((2*n)!*coeff(series(JacobiDN(z, k), z,
    2*len + 2), z, 2*n), n = 0..len) end:
    dn_list(2, 15);  # Peter Luschny, Mar 25 2024
  • Mathematica
    nmax = 20;
    DeleteCases[CoefficientList[JacobiDN[x, 4] + O[x]^(2*nmax+2), x], 0]* (2*Range[0, nmax])! (* Jean-François Alcover, Mar 28 2024 *)
  • PARI
    /* D(x) = Jacobi Elliptic Function dn(x,k) at k = 2: */
    {a(n) = my(k=2, C=1,S=x,D=1); for(i=1,n,
    S = intformal(C*D + x*O(x^(2*n+1)));
    C = 1 - intformal(S*D);
    D = 1 - k^2*intformal(S*C)); (2*n)!*polcoeff(D,2*n)}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) = (-1)^n * Sum_{k=0..n-1} A060627(n,k)*4^(n-k) for n >= 1, with a(0) = 1.
E.g.f. D(x) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)! satisfies the following formulas, where sn, cn, and dn are Jacobi elliptic functions.
(1) D(x) = dn(x,k) at k = 2.
(2.a) D(x) = cn(2*x, 1/2).
(2.b) D(x) = (4 - 8*sn(x,1/2)^2 + sn(x,1/2)^4) / (4 - sn(x,1/2)^4).
(3) D(x) = 1 - Integral sqrt(1 - D(x)^2) * sqrt(3 + D(x)^2) dx.
(4) D(x) = cos( Integral sqrt(3 + D(x)^2) dx ).
(5.a) D(x) = sqrt(1 - 4*sn(x,2)^2).
(5.b) D(x) = sqrt(4*cn(x,2)^2 - 3).
O.g.f. 1/(1 + 4*x/(1 + 2^2*x/(1 + 4*3^2*x/(1 + 4^2*x/(1 + 4*5^2*x/(1 + 6^2*x/(1 + 4*7^2*x/(1 + ...)))))))) = 1 - 4*x + 32*x^2 - 832*x^3 + 41216*x^4 - 3168256*x^5 + ... (continued fraction, see Wall, 94.19, p. 374).
a(n) ~ (-1)^n * 2^(4*n+3) * agm(1,2)^(2*n+1) * n^(2*n + 1/2) / (Pi^(2*n + 1/2) * exp(2*n)), where agm(1,2) = A068521 is the arithmetic-geometric mean. - Vaclav Kotesovec, Mar 28 2024

A309893 Decimal expansion of AGM(1, sqrt(3)/2).

Original entry on oeis.org

9, 3, 1, 8, 0, 8, 3, 9, 1, 6, 2, 2, 4, 4, 8, 2, 7, 1, 1, 7, 7, 8, 4, 4, 5, 1, 5, 5, 1, 2, 1, 3, 5, 2, 9, 7, 5, 7, 8, 7, 6, 6, 4, 2, 8, 4, 1, 3, 4, 2, 6, 8, 6, 1, 1, 1, 0, 2, 2, 0, 6, 1, 3, 4, 8, 9, 1, 6, 2, 8, 9, 7, 2, 8
Offset: 0

Views

Author

Daniel Hoyt, Aug 21 2019

Keywords

Comments

Related to the pendulum acceleration relation at 60 degrees. In general, the period T of a mathematical pendulum with a maximum deflection angle theta is 2*Pi*sqrt(L/g)/AGM(1, cos(theta/2)), where L is the length of the pendulum, g is the gravitational acceleration, and 0 < theta <= 90 degrees. For theta = 60 degrees, the period is T = 2*Pi*sqrt(L/g)/AGM(1, sqrt(3)/2). - Jianing Song, Nov 21 2022

Examples

			0.931808391622448271177844...
		

Crossrefs

Cf. A310000 (AGM(1, cos(Pi/5))), A096427 (AGM(1, sqrt(2)/2)), A053004, A014549, A068521.

Programs

  • Mathematica
    RealDigits[ArithmeticGeometricMean[1, Sqrt[3]/2], 10, 100][[1]] (* Amiram Eldar, Aug 21 2019 *)
  • PARI
    agm(1, sqrt(3)/2) \\ Michel Marcus, Aug 22 2019
    
  • Python
    import decimal
    prec = int(input('Precision: '))
    decimal.getcontext().prec = prec
    D = decimal.Decimal
    def agm(a, b):
        for x in range(prec):
            a, b = (a + b) / 2,(a * b).sqrt()
        return a
    print(agm(1, D(3).sqrt()/2))
    
  • Sage
    RealField(300)(1.0).agm(sqrt(3)/2) # Peter Luschny, Aug 22 2019

Formula

AGM(1, sin(Pi/3)).

A310000 Decimal expansion of AGM(1, phi/2), where phi is the golden ratio (A001622).

Original entry on oeis.org

9, 0, 1, 9, 7, 9, 3, 3, 8, 1, 1, 4, 3, 4, 3, 1, 2, 3, 3, 9, 7, 2, 7, 1, 5, 3, 6, 5, 8, 7, 7, 9, 8, 6, 2, 7, 5, 5, 1, 6, 2, 3, 7, 4, 6, 7, 3, 6, 9, 9, 0, 1, 4, 0, 7, 9, 8, 4, 7, 7, 9, 4, 2, 9, 1, 1, 9, 4, 1, 4, 2, 6, 2, 6, 2, 0, 5, 7, 7, 2, 7, 5, 4, 1, 8
Offset: 0

Views

Author

Daniel Hoyt, Aug 26 2019

Keywords

Comments

Related to the pendulum acceleration relation at 72 degrees. 2*Pi*sqrt(l/g)/AGM(1, phi/2) gives the period T of a mathematical pendulum with a maximum deflection angle of 72 degrees from the downward vertical. The length of the pendulum is l and g is the gravitational acceleration.

Examples

			0.9019793381143431233972715365...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ArithmeticGeometricMean[1, GoldenRatio/2], 10, 100][[1]] (* Amiram Eldar, Aug 26 2019 *)
  • PARI
    agm(1, cos(Pi/5)) \\ Michel Marcus, Apr 05 2020
  • Python
    import decimal
    iters = int(input('Precision: '))
    decimal.getcontext().prec = iters
    D = decimal.Decimal
    def agm(a, b):
        for x in range(iters):
            a, b = (a + b) / 2,(a * b).sqrt()
        return a
    print(agm(1, (D(5).sqrt()+1)/4))
    

Formula

Equals AGM(1, cos(Pi/5)).

A163766 Continued fraction expansion of the arithmetic-geometric mean of 1 and 2.

Original entry on oeis.org

1, 2, 5, 3, 2, 167, 1, 1, 99, 7, 10, 2, 2, 2, 2, 4, 1, 264, 2, 7, 2, 2, 2, 13, 1, 9, 3, 1, 4, 1, 1, 2, 15, 3, 1, 1, 1, 1, 1, 1, 3, 1, 2, 2, 1, 4, 2, 1, 1, 5, 1, 1, 2, 16, 1, 5, 3, 1, 3, 2, 3, 1, 1, 2, 1, 43, 3, 1, 30, 1, 3, 153, 1, 1, 2, 1, 3, 1, 1, 13, 4, 6, 1, 1, 11, 2, 1, 2, 98, 1, 3, 1, 3, 1, 5, 15, 4, 1
Offset: 0

Views

Author

B. R. Becker (bbecker(AT)panda3.phys.unm.edu), Aug 03 2009

Keywords

Examples

			This is the continued fraction of AGM(1,2) = 1.4567910310....
		

Crossrefs

Cf. A068521 (decimal expansion).

Programs

  • Mathematica
    ContinuedFraction[ArithmeticGeometricMean[1, 2], 98]

Extensions

Offset changed by Andrew Howroyd, Aug 09 2024
Showing 1-10 of 10 results.