A310000 Decimal expansion of AGM(1, phi/2), where phi is the golden ratio (A001622).
9, 0, 1, 9, 7, 9, 3, 3, 8, 1, 1, 4, 3, 4, 3, 1, 2, 3, 3, 9, 7, 2, 7, 1, 5, 3, 6, 5, 8, 7, 7, 9, 8, 6, 2, 7, 5, 5, 1, 6, 2, 3, 7, 4, 6, 7, 3, 6, 9, 9, 0, 1, 4, 0, 7, 9, 8, 4, 7, 7, 9, 4, 2, 9, 1, 1, 9, 4, 1, 4, 2, 6, 2, 6, 2, 0, 5, 7, 7, 2, 7, 5, 4, 1, 8
Offset: 0
Examples
0.9019793381143431233972715365...
Programs
-
Mathematica
RealDigits[ArithmeticGeometricMean[1, GoldenRatio/2], 10, 100][[1]] (* Amiram Eldar, Aug 26 2019 *)
-
PARI
agm(1, cos(Pi/5)) \\ Michel Marcus, Apr 05 2020
-
Python
import decimal iters = int(input('Precision: ')) decimal.getcontext().prec = iters D = decimal.Decimal def agm(a, b): for x in range(iters): a, b = (a + b) / 2,(a * b).sqrt() return a print(agm(1, (D(5).sqrt()+1)/4))
Formula
Equals AGM(1, cos(Pi/5)).
Comments