A096427 Decimal expansion of 1/(sqrt(2)*G), where G is Gauss's constant A014549.
8, 4, 7, 2, 1, 3, 0, 8, 4, 7, 9, 3, 9, 7, 9, 0, 8, 6, 6, 0, 6, 4, 9, 9, 1, 2, 3, 4, 8, 2, 1, 9, 1, 6, 3, 6, 4, 8, 1, 4, 4, 5, 9, 1, 0, 3, 2, 6, 9, 4, 2, 1, 8, 5, 0, 6, 0, 5, 7, 9, 3, 7, 2, 6, 5, 9, 7, 3, 4, 0, 0, 4, 8, 3, 4, 1, 3, 4, 7, 5, 9, 7, 2, 3, 2, 0, 0, 2, 9, 3, 9, 9, 4, 6, 1, 1, 2, 2, 9, 9, 4, 2
Offset: 0
Examples
0.8472130847939790866064991234821916364814459103269... = agm(1, sqrt(1/2))
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.1, p. 421.
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 1, equation 1:7:6 at page 13.
Links
- Harry J. Smith, Table of n, a(n) for n = 0..20000
- Peter Bala, Notes on the constants A096427 and A224268 .
- Eric Weisstein's World of Mathematics, Gauss's Constant.
- Eric Weisstein's World of Mathematics, Jacobi Theta Functions.
- Eric Weisstein's World of Mathematics, Ubiquitous Constant.
- Index entries for transcendental numbers.
Crossrefs
Programs
-
Magma
SetDefaultRealField(RealField(100)); R:= RealField(); Gamma(3/4)^2/(Sqrt(2)*Sqrt(Pi(R)/2)); // G. C. Greubel, Aug 17 2018
-
Mathematica
RealDigits[ArithmeticGeometricMean[1, Sqrt[2]]/Sqrt[2], 10, 110][[1]] (* Bruno Berselli, Apr 02 2013 *) (* From the comment: *) RealDigits[N[Product[1 - 1/(4 n - 1)^2, {n, 1, Infinity}], 110]][[1]] (* Bruno Berselli, Apr 02 2013 *)
-
PARI
{ default(realprecision, 20080); x=agm(1, sqrt(1/2)); d=0; for (n=0, 20000, x=(x-d)*10; d=floor(x); write("b096427.txt", n, " ", d)); } \\ Harry J. Smith, Apr 15 2009
-
PARI
agm(1, sqrt(1/2)) \\ Michel Marcus, Jun 09 2019
Formula
Also equals agm(1,1/sqrt(2)) since agm(1,1/b) = (1/b)*agm(1,b). - Gerald McGarvey, Sep 22 2008
From Peter Bala, Feb 26 2019: (Start)
C = Gamma(3/4)^2/sqrt(Pi).
C = 1/( Sum_{n = -inf..inf} exp(-Pi*n^2) )^2.
C = (1/sqrt(2)) * 1/( Sum_{n = -inf..inf} (-1)^n*exp(-Pi*n^2 ) )^2.
Conjecturally, C = (1/sqrt(2)) * 1/( Sum_{n = -inf..inf} exp(-Pi*(n+1/2)^2 ) )^2.
C = ((-1)^m*4^m/binomial(2*m,m)) * Product_{n >= 0} ( 1 - (4*m + 1)^2/(4*n + 3)^2 ), for m = 0,1,2,....
C = 1 - Integral_{x = 0..1} (sqrt(1 + x^4) - 1)/x^2 dx.
C = 1 - Sum_{n >= 1} binomial(1/2,n)/(4*n - 1) = 1 - Sum_{n >= 0} (-1)^n/(4*n + 3)*Catalan(n)/2^(2*n + 1).
Continued fraction: 1 - 1/(3 + 6/(1 + 12/(3 + ... + (4*n - 1)*(4*n - 2)/(1 + 4*n*(4*n - 1)/(3 + ... ))))). (End)
From Peter Bala, Mar 02 2022 : (Start)
C = (2/3)*hypergeom([1/4, 3/4], [7/4], 1)
C = hypergeom([-1/4, 1/4], [3/4], 1).
C = hypergeom([-1/2, -1/4], [3/4], -1). Cf. A053004.
C = (16/21)*hypergeom([-1/4, -3/4], [7/4], 1). (End)
Equals Pi/(sqrt(2)*A062539). - Amiram Eldar, May 04 2022
C = Integral_{x = 0..Pi/2} sqrt(sin(x)*cos(x)) dx. - Adam Hugill, Nov 27 2022
Comments