cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A014549 Decimal expansion of 1 / M(1,sqrt(2)) (Gauss's constant).

Original entry on oeis.org

8, 3, 4, 6, 2, 6, 8, 4, 1, 6, 7, 4, 0, 7, 3, 1, 8, 6, 2, 8, 1, 4, 2, 9, 7, 3, 2, 7, 9, 9, 0, 4, 6, 8, 0, 8, 9, 9, 3, 9, 9, 3, 0, 1, 3, 4, 9, 0, 3, 4, 7, 0, 0, 2, 4, 4, 9, 8, 2, 7, 3, 7, 0, 1, 0, 3, 6, 8, 1, 9, 9, 2, 7, 0, 9, 5, 2, 6, 4, 1, 1, 8, 6, 9, 6, 9, 1, 1, 6, 0, 3, 5, 1, 2, 7, 5, 3, 2, 4, 1, 2, 9, 0, 6, 7, 8, 5
Offset: 0

Views

Author

Keywords

Comments

On May 30, 1799, Gauss discovered that this number is also equal to (2/Pi)*Integral_{t=0..1} 1/sqrt(1-t^4).
M(a,b) is the limit of the arithmetic-geometric mean iteration applied repeatedly starting with a and b: a_0 = a, b_0 = b, a_{n+1} = (a_n + b_n)/2, b_{n+1} = sqrt(a_n*b_n).

Examples

			0.8346268416740731862814297327990468...
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, page 5.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 1.5.4 and 6.1, pp. 34, 420.
  • J. R. Goldman, The Queen of Mathematics, 1998, p. 92.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Sqrt(Pi(R)/2)/Gamma(3/4)^2; // G. C. Greubel, Aug 17 2018
  • Maple
    evalf(1/GaussAGM(1, sqrt(2)), 144);  # Alois P. Heinz, Jul 05 2023
  • Mathematica
    RealDigits[Gamma[1/4]^2/(2*Pi^(3/2)*Sqrt[2]), 10, 105][[1]] (* or: *)
    RealDigits[1/ArithmeticGeometricMean[1, Sqrt[2]], 10, 105][[1]] (* Jean-François Alcover, Dec 13 2011, updated Nov 11 2016, after Eric W. Weisstein *)
    First[RealDigits[N[EllipticTheta[4, Exp[-Pi]]^2, 90]]] (* Stefano Spezia, Sep 29 2022 *)
  • PARI
    default(realprecision, 20080); x=10*agm(1, sqrt(2))^-1; for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b014549.txt", n, " ", d)); \\ Harry J. Smith, Apr 20 2009
    
  • PARI
    1/agm(sqrt(2),1) \\ Charles R Greathouse IV, Feb 04 2015
    
  • PARI
    sqrt(Pi/2)/gamma(3/4)^2 \\ Charles R Greathouse IV, Feb 04 2015
    
  • Python
    from mpmath import mp, agm, sqrt
    mp.dps=105
    print([int(z) for z in list(str(1/agm(sqrt(2)))[2:-1])]) # Indranil Ghosh, Jul 11 2017
    

Formula

Equals (lim_{k->oo} p(k))/(1+i) and (lim_{k->oo} q(k))/(1+i), where i is the imaginary unit, p(0) = 1, q(0) = i, p(k+1) = 2*p(k)*q(k)/(p(k)+q(k)) and q(k+1) = sqrt(p(k)*q(k)) for k >= 0. - A.H.M. Smeets, Jul 26 2018
Equals the infinite quotient product (3/4)*(6/5)*(7/8)*(10/9)*(11/12)*(14/13)*(15/16)*... . - James Maclachlan, Jul 28 2019
Equals (9/15)*hypergeom([1/2, 3/4], [9/4], 1). - Peter Bala, Mar 03 2022
Equals A062539 / Pi. - Amiram Eldar, May 04 2022
From Stefano Spezia, Sep 29 2022: (Start)
Equals theta4(exp(-Pi))^2.
Equals sqrt(2)*A093341/Pi. (End)
Equals Sum_{k>=0} (-1)^k * binomial(2*k,k)^2/16^k. - Amiram Eldar, Jul 04 2023
From Gerry Martens, Jul 31 2023: (Start)
Equals 2*Gamma(5/4)/(sqrt(Pi)*Gamma(3/4)).
Equals hypergeom([1/4, -2/4], [1], 1). (End)
Equals A248557^2. - Hugo Pfoertner, Jun 28 2024

Extensions

Extended to 105 terms by Jean-François Alcover, Dec 13 2011
a(104) corrected by Andrew Howroyd, Feb 23 2018

A053004 Decimal expansion of AGM(1,sqrt(2)).

Original entry on oeis.org

1, 1, 9, 8, 1, 4, 0, 2, 3, 4, 7, 3, 5, 5, 9, 2, 2, 0, 7, 4, 3, 9, 9, 2, 2, 4, 9, 2, 2, 8, 0, 3, 2, 3, 8, 7, 8, 2, 2, 7, 2, 1, 2, 6, 6, 3, 2, 1, 5, 6, 5, 1, 5, 5, 8, 2, 6, 3, 6, 7, 4, 9, 5, 2, 9, 4, 6, 4, 0, 5, 2, 1, 4, 1, 4, 3, 9, 1, 5, 6, 7, 0, 8, 3, 5, 8, 8, 5, 5, 5, 6, 4, 8, 9, 7, 9, 3, 3, 8, 9, 3, 7, 5, 9, 0
Offset: 1

Views

Author

N. J. A. Sloane, Feb 21 2000

Keywords

Comments

AGM(a,b) is the limit of the arithmetic-geometric mean iteration applied repeatedly starting with a and b: a_0=a, b_0=b, a_{n+1}=(a_n+b_n)/2, b_{n+1}=sqrt(a_n*b_n).

Examples

			1.19814023473559220743992249228...
		

References

  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), p. 195.
  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, page 5.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.1, p. 420.
  • J. R. Goldman, The Queen of Mathematics, 1998, p. 92.

Crossrefs

Programs

  • Maple
    evalf(GaussAGM(1, sqrt(2)), 144);  # Alois P. Heinz, Jul 05 2023
  • Mathematica
    RealDigits[ N[ ArithmeticGeometricMean[1, Sqrt[2]], 105]][[1]] (* Jean-François Alcover, Jan 30 2012 *)
    RealDigits[N[(1+Sqrt[2])Pi/(4EllipticK[17-12Sqrt[2]]), 105]][[1]] (* Jean-François Alcover, Jun 02 2019 *)
  • PARI
    default(realprecision, 20080); x=agm(1, sqrt(2)); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b053004.txt", n, " ", d)) \\ Harry J. Smith, Apr 20 2009
    
  • PARI
    2*real(agm(1, I)/(1+I)) \\ Michel Marcus, Jul 26 2018
    
  • Python
    from mpmath import mp, agm, sqrt
    mp.dps=106
    print([int(z) for z in list(str(agm(1, sqrt(2))).replace('.', '')[:-1])]) # Indranil Ghosh, Jul 11 2017

Formula

Equals Pi/(2*A085565). - Nathaniel Johnston, May 26 2011
Equals Integral_{x=0..Pi/2} sqrt(sin(x)) or Integral_{x=0..1} sqrt(x/(1-x^2)). - Jean-François Alcover, Apr 29 2013 [cf. Boros & Moll p. 195]
Equals Product_{n>=1} (1+1/A033566(n)) and also 2*AGM(1, i)/(1+i) where i is the imaginary unit. - Dimitris Valianatos, Oct 03 2016
Conjecturally equals 1/( Sum_{n = -infinity..infinity} exp(-Pi*(n+1/2)^2 ) )^2. Cf. A096427. - Peter Bala, Jun 10 2019
From Amiram Eldar, Aug 26 2020: (Start)
Equals 2 * A076390.
Equals Integral_{x=0..Pi} sin(x)^2/sqrt(1 + sin(x)^2) dx. (End)
Equals sqrt(2/Pi)*Gamma(3/4)^2 = Integral_{x = 0..1} 1/(1 - x^2)^(1/4) dx = Pi/Integral_{x = 0..1} 1/(1 - x^2)^(3/4) dx. - Peter Bala, Jan 05 2022
From Peter Bala, Mar 02 2022: (Start)
Equals 2*Integral_{x = 0..1} x^2/sqrt(1 - x^4) dx.
Equals 1 - Integral_{x = 0..1} (sqrt(1 - x^4) - 1)/x^2 dx.
Equals hypergeom([-1/2, -1/4], [3/4], 1) = 1 + Sum_{n >= 0} 1/(4*n + 3)*Catalan(n)*(1/2^(2*n+1)). Cf. A096427. (End)

Extensions

More terms from James Sellers, Feb 22 2000

A053003 Continued fraction for M(1,sqrt(2)).

Original entry on oeis.org

1, 5, 21, 3, 4, 14, 1, 1, 1, 1, 1, 3, 1, 15, 1, 3, 8, 36, 1, 2, 5, 2, 1, 1, 2, 2, 6, 9, 1, 1, 1, 3, 1, 2, 6, 1, 5, 1, 1, 2, 1, 13, 2, 2, 5, 1, 2, 2, 1, 5, 1, 3, 1, 3, 1, 2, 2, 2, 2, 8, 3, 1, 2, 2, 1, 10, 2, 2, 2, 3, 3, 1, 7, 1, 8, 3, 1, 1, 1, 1, 1, 1, 1, 1, 5, 2, 1, 2, 17, 1, 4, 31, 2, 2, 5, 30, 1, 8, 2, 1
Offset: 0

Views

Author

N. J. A. Sloane, Feb 21 2000

Keywords

Comments

M(a,b) is the limit of the arithmetic-geometric mean iteration applied repeatedly starting with a and b: a_0=a, b_0=b, a_{n+1}=(a_n+b_n)/2, b_{n+1}=sqrt(a_n*b_n).

Examples

			1.19814023473559220743992249228...
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, page 5.
  • J. R. Goldman, The Queen of Mathematics, 1998, p. 92.

Crossrefs

Cf. A014549, A053002 without the leading term, A053004 (decimal expansion).

Programs

  • Mathematica
    ContinuedFraction[ArithmeticGeometricMean[1,Sqrt[2]],100] (* Harvey P. Dale, Feb 26 2012 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(agm(1, sqrt(2))); for (n=1, 20000, write("b053003.txt", n-1, " ", x[n])); } \\ Harry J. Smith, Apr 20 2009

Extensions

More terms from James Sellers, Feb 22 2000
Offset changed by Andrew Howroyd, Aug 03 2024
Showing 1-3 of 3 results.