A358363
a(n) = 16^n * Sum_{k=0..n} (-1)^k*binomial(1/2, k)^2.
Original entry on oeis.org
1, 12, 196, 3120, 50020, 799536, 12799632, 204724416, 3276326820, 52413049520, 838703348496, 13418125153472, 214703825630736, 3435088134123200, 54963617747611200, 879389273444524800, 14070604335190692900, 225124668703739770800, 3602061930346132909200
Offset: 0
-
a := n -> 16^n*add((-1)^k*binomial(1/2, k)^2, k = 0..n):
seq(a(n), n = 0..18);
-
a[n_] := 16^n * Sum[(-1)^k*Binomial[1/2, k]^2, {k, 0, n}]; Array[a, 19, 0] (* Amiram Eldar, Nov 12 2022 *)
A358364
a(n) = 16^n * Sum_{k=0..n} binomial(1/2, k)^2.
Original entry on oeis.org
1, 20, 324, 5200, 83300, 1333584, 21344400, 341580096, 5466017700, 87464462800, 1399525960976, 22393543798080, 358310523944464, 5733141459080000, 91732470946920000, 1467748145667974400, 23484346290765886500, 375754541311565499600, 6012139892071344570000
Offset: 0
-
a := n -> 16^n*add(binomial(1/2, k)^2, k = 0..n):
seq(a(n), n = 0..18);
-
a[n_] := 16^n * Sum[Binomial[1/2, k]^2, {k, 0, n}]; Array[a, 19, 0] (* Amiram Eldar, Nov 12 2022 *)
A358365
a(n) = 16^n * Sum_{k=0..n} binomial(-1/2, k)^2.
Original entry on oeis.org
1, 20, 356, 6096, 102436, 1702480, 28093456, 461273920, 7546019620, 123100218320, 2003738272656, 32557446669120, 528231606378256, 8559878182412096, 138567392514153536, 2241139725237406976, 36219533239041063716, 584958249814679707856, 9441690077748181415696
Offset: 0
-
a := n -> 16^n*add(binomial(-1/2, k)^2, k = 0..n):
seq(a(n), n = 0..18);
-
a[n_] := 16^n * Sum[Binomial[-1/2, k]^2, {k, 0, n}]; Array[a, 19, 0] (* Amiram Eldar, Nov 12 2022 *)
A367330
a(n) = 27^n * Sum_{k=0..n} (-1)^k*binomial(-1/3, k)^2.
Original entry on oeis.org
1, 24, 684, 17880, 493785, 13108608, 358702272, 9579537792, 261039317220, 6992695897440, 190104989730480, 5101807912472160, 138496042650288420, 3721234160086727040, 100918032317551270080, 2713823288825315967360, 73545091414048811297745
Offset: 0
-
Table[27^n*Sum[(-1)^k*Binomial[-1/3, k]^2, {k, 0, n}], {n, 0, 16}]
Showing 1-4 of 4 results.
Comments