A358362
a(n) = 16^n * Sum_{k=0..n} (-1)^k*binomial(-1/2, k)^2.
Original entry on oeis.org
1, 12, 228, 3248, 56868, 846384, 14395920, 218556096, 3662534436, 56236646576, 933921124752, 14445103689408, 238434118702864, 3706773418885824, 60917716297733184, 950622015752780544, 15571249887287040804, 243694280206569964464, 3981466564018425521424
Offset: 0
-
a := n -> 16^n*add((-1)^k*binomial(-1/2, k)^2, k = 0..n):
seq(a(n), n = 0..19);
-
a[n_] := 16^n * Sum[(-1)^k*Binomial[-1/2, k]^2, {k, 0, n}]; Array[a, 19, 0] (* Amiram Eldar, Nov 12 2022 *)
A358364
a(n) = 16^n * Sum_{k=0..n} binomial(1/2, k)^2.
Original entry on oeis.org
1, 20, 324, 5200, 83300, 1333584, 21344400, 341580096, 5466017700, 87464462800, 1399525960976, 22393543798080, 358310523944464, 5733141459080000, 91732470946920000, 1467748145667974400, 23484346290765886500, 375754541311565499600, 6012139892071344570000
Offset: 0
-
a := n -> 16^n*add(binomial(1/2, k)^2, k = 0..n):
seq(a(n), n = 0..18);
-
a[n_] := 16^n * Sum[Binomial[1/2, k]^2, {k, 0, n}]; Array[a, 19, 0] (* Amiram Eldar, Nov 12 2022 *)
A358365
a(n) = 16^n * Sum_{k=0..n} binomial(-1/2, k)^2.
Original entry on oeis.org
1, 20, 356, 6096, 102436, 1702480, 28093456, 461273920, 7546019620, 123100218320, 2003738272656, 32557446669120, 528231606378256, 8559878182412096, 138567392514153536, 2241139725237406976, 36219533239041063716, 584958249814679707856, 9441690077748181415696
Offset: 0
-
a := n -> 16^n*add(binomial(-1/2, k)^2, k = 0..n):
seq(a(n), n = 0..18);
-
a[n_] := 16^n * Sum[Binomial[-1/2, k]^2, {k, 0, n}]; Array[a, 19, 0] (* Amiram Eldar, Nov 12 2022 *)
A367331
a(n) = 27^n * Sum_{k=0..n} (-1)^k*binomial(1/3, k)^2.
Original entry on oeis.org
1, 24, 657, 17664, 477828, 12888288, 348197220, 9397548288, 253804616001, 6851337236952, 185014241769825, 4994797849546752, 134872057740184128, 3641273395825798656, 98320397048549301312, 2654515896013953110016, 71674988018612154171876
Offset: 0
-
Table[27^n*Sum[(-1)^k*Binomial[1/3, k]^2, {k, 0, n}], {n, 0, 16}]
Showing 1-4 of 4 results.
Comments