A358362
a(n) = 16^n * Sum_{k=0..n} (-1)^k*binomial(-1/2, k)^2.
Original entry on oeis.org
1, 12, 228, 3248, 56868, 846384, 14395920, 218556096, 3662534436, 56236646576, 933921124752, 14445103689408, 238434118702864, 3706773418885824, 60917716297733184, 950622015752780544, 15571249887287040804, 243694280206569964464, 3981466564018425521424
Offset: 0
-
a := n -> 16^n*add((-1)^k*binomial(-1/2, k)^2, k = 0..n):
seq(a(n), n = 0..19);
-
a[n_] := 16^n * Sum[(-1)^k*Binomial[-1/2, k]^2, {k, 0, n}]; Array[a, 19, 0] (* Amiram Eldar, Nov 12 2022 *)
A367331
a(n) = 27^n * Sum_{k=0..n} (-1)^k*binomial(1/3, k)^2.
Original entry on oeis.org
1, 24, 657, 17664, 477828, 12888288, 348197220, 9397548288, 253804616001, 6851337236952, 185014241769825, 4994797849546752, 134872057740184128, 3641273395825798656, 98320397048549301312, 2654515896013953110016, 71674988018612154171876
Offset: 0
-
Table[27^n*Sum[(-1)^k*Binomial[1/3, k]^2, {k, 0, n}], {n, 0, 16}]
A367332
a(n) = 27^n * Sum_{k=0..n} binomial(1/3, k)^2.
Original entry on oeis.org
1, 30, 819, 22188, 599976, 16212420, 437948784, 11828393820, 319437445365, 8626198419930, 232935493710231, 6289845008414760, 169838331029620344, 4585907100958922088, 123825507087143633976, 3343423515649756142760, 90275493748778836055964
Offset: 0
-
Table[27^n*Sum[Binomial[1/3, k]^2, {k, 0, n}], {n, 0, 16}]
A367333
a(n) = 27^n * Sum_{k=0..n} binomial(-1/3, k)^2.
Original entry on oeis.org
1, 30, 846, 23430, 643635, 17601732, 480016620, 13065872292, 355170348720, 9644965082940, 261716257738980, 7097365769203260, 192376104782028120, 5212313820585819540, 141177183151026767580, 3822747528826291049460, 103486045894075138514445
Offset: 0
-
Table[27^n*Sum[Binomial[-1/3, k]^2, {k, 0, n}], {n, 0, 16}]
Showing 1-4 of 4 results.
Comments