A358364
a(n) = 16^n * Sum_{k=0..n} binomial(1/2, k)^2.
Original entry on oeis.org
1, 20, 324, 5200, 83300, 1333584, 21344400, 341580096, 5466017700, 87464462800, 1399525960976, 22393543798080, 358310523944464, 5733141459080000, 91732470946920000, 1467748145667974400, 23484346290765886500, 375754541311565499600, 6012139892071344570000
Offset: 0
-
a := n -> 16^n*add(binomial(1/2, k)^2, k = 0..n):
seq(a(n), n = 0..18);
-
a[n_] := 16^n * Sum[Binomial[1/2, k]^2, {k, 0, n}]; Array[a, 19, 0] (* Amiram Eldar, Nov 12 2022 *)
A367330
a(n) = 27^n * Sum_{k=0..n} (-1)^k*binomial(-1/3, k)^2.
Original entry on oeis.org
1, 24, 684, 17880, 493785, 13108608, 358702272, 9579537792, 261039317220, 6992695897440, 190104989730480, 5101807912472160, 138496042650288420, 3721234160086727040, 100918032317551270080, 2713823288825315967360, 73545091414048811297745
Offset: 0
-
Table[27^n*Sum[(-1)^k*Binomial[-1/3, k]^2, {k, 0, n}], {n, 0, 16}]
A367331
a(n) = 27^n * Sum_{k=0..n} (-1)^k*binomial(1/3, k)^2.
Original entry on oeis.org
1, 24, 657, 17664, 477828, 12888288, 348197220, 9397548288, 253804616001, 6851337236952, 185014241769825, 4994797849546752, 134872057740184128, 3641273395825798656, 98320397048549301312, 2654515896013953110016, 71674988018612154171876
Offset: 0
-
Table[27^n*Sum[(-1)^k*Binomial[1/3, k]^2, {k, 0, n}], {n, 0, 16}]
A367333
a(n) = 27^n * Sum_{k=0..n} binomial(-1/3, k)^2.
Original entry on oeis.org
1, 30, 846, 23430, 643635, 17601732, 480016620, 13065872292, 355170348720, 9644965082940, 261716257738980, 7097365769203260, 192376104782028120, 5212313820585819540, 141177183151026767580, 3822747528826291049460, 103486045894075138514445
Offset: 0
-
Table[27^n*Sum[Binomial[-1/3, k]^2, {k, 0, n}], {n, 0, 16}]
Showing 1-4 of 4 results.
Comments