cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A104203 Expansion of the sine lemniscate function sl(x).

Original entry on oeis.org

1, 0, 0, 0, -12, 0, 0, 0, 3024, 0, 0, 0, -4390848, 0, 0, 0, 21224560896, 0, 0, 0, -257991277243392, 0, 0, 0, 6628234834692624384, 0, 0, 0, -319729080846260095008768, 0, 0, 0, 26571747463798134334265819136, 0, 0, 0, -3564202847752289659513902717468672, 0, 0
Offset: 1

Views

Author

Troy Kessler (tkessler1977(AT)netzero.com), Mar 13 2005

Keywords

Comments

For the series expansion of the cosine lemniscate cl(x) see A159600. The lemniscatic functions sl(x) and cl(x) played a significant role in the development of mathematics in the 18th and 19th centuries. They were the first examples of elliptic functions. In algebraic number theory all abelian extensions of the Gaussian rationals Q(i) are contained in extensions of Q(i) generated by division values of the lemniscatic functions. - Peter Bala, Aug 25 2011

Examples

			G.f. = x - 12*x^5 + 3024*x^9 - 4390848*x^13 + 21224560896*x^17 + ...
Example of the recurrence relation a(n+2) = -2*sum {i+j+k = n} n!/(i!*j!*k!)*a(i)*a(j)*a(k) for n = 13:
There are only 6 compositions of 13-2 = 11 that give a nonzero contribution to the sum, namely 11 = 9+1+1 = 1+9+1 = 1+1+9 and 11 = 5+5+1 = 5+1+5 = 1+5+5
and hence
a(13) = -2*(3*11!/(9!*1!*1*)*a(9)*a(1)*a(1)+3*11!/(5!*5!*1!)*a(5)*a(5)*a(1)) = -4390848.
		

Crossrefs

Cf. A144849, A144853, A159600 (cosine lemniscate).
Taking every fourth term gives A283831.
Cf. A242240.

Programs

  • Mathematica
    Drop[ Range[0, 37]! CoefficientList[ InverseSeries[ Series[ Integrate[1/(1 - x^4)^(1/2), x], {x, 0, 37}]], x], 1] (* Robert G. Wilson v, Mar 16 2005 *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ JacobiSD[x, 1/2] 2^((n - 1)/2), {x, 0, n}]]; (* Michael Somos, Jan 17 2017 *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ JacobiSN[x, -1], {x, 0, n}]]; (* Michael Somos, May 26 2021 *)
  • PARI
    x='x+O('x^66);Vec(serlaplace(serreverse( intformal(1/sqrt(1-x^4))))) \\ Joerg Arndt, Mar 24 2017

Formula

From Peter Bala, Aug 25 2011: (Start)
The function sl(x) satisfies the differential equation sl''(x) = -2*sl^3(x) with initial conditions sl(0) = 0, sl'(0) = 1.
Recurrence relation:
a(n+2) = -2*sum {i+j+k = n} n!/(i!*j!*k!)*a(i)*a(j)*a(k).
The inverse of the sine lemniscate function may be defined as the algebraic integral
sl^(-1)(x) := Integral_{s=0..x} 1/sqrt(1-s^4) ds = x + x^5/10 + x^9/24 + 5*x^13/208 + ....
Series reversion produces the expansion
sl(x) = x - 12*x^5/5! + 3024*x^9/9! - 4390848*x^13/13! + ....
The coefficients in this expansion can be calculated using nested derivatives as follows (see [Dominici, Theorem 4.1]): Let f(x) = sqrt(1-x^4). Define the nested derivative D^n[f](x) by means of the recursion
D^0[f](x) = 1 and D^(n+1)[f](x) = d/dx(f(x)*D^n[f](x)) for n >= 0.
The coefficients in the expansion of D^n[f](x) in powers of f(x) are given in A145271. Then we have a(n) = D^(n-1)[f](0).
a(n) is divisible by 12^n and a(n)/12^n produces (a signed and aerated version of) A144853(n).
(End)
The function sl(x) satisfies the differential equation sl'(x)^2 + sl(x)^4 = 1 with initial conditions sl(0) = 0, sl'(0) = 1. - Michael Somos, Oct 12 2019

Extensions

More terms from Robert G. Wilson v, Mar 16 2005
a(37)- a(39) by Vincenzo Librandi, Mar 24 2017

A144853 Coefficients in the expansion of the sine lemniscate function.

Original entry on oeis.org

1, 1, 21, 2541, 1023561, 1036809081, 2219782435101, 8923051855107621, 61797392100611962641, 690766390156657904866161, 11839493254591562294152214181, 298556076626963858753929987732701, 10706038142052878970311146962646277721, 530588758323899225681861502684757146635241
Offset: 0

Views

Author

N. J. A. Sloane, Feb 12 2009

Keywords

Comments

Denoted \alpha_n by Lomont and Brillhart on page xii.

Examples

			G.f. = 1 + x + 21*x^2 + 2541*x^3 + 1023561*x^4 + 1036809081*x^5 + ...
		

References

  • J. S. Lomont and J. Brillhart, Elliptic Polynomials, Chapman and Hall, 2001; see p. 87.

Crossrefs

Programs

  • Maple
    for n from 1 to 15 do b[n]:=add(binomial(4*n,4*j+2)*b[j]*b[n-1-j],j=0..n-1);
    a[n]:=(1/3)*add(binomial(4*n-1,4*j+1)*a[j]*b[n-1-j],j=0..n-1); od:
    ta:=[seq(a[n],n=0..15)];
  • Mathematica
    a[ n_] := If[ n < 0, 0, With[ {m = 4 n + 1}, m! SeriesCoefficient[ JacobiSD[ x, 1/2], {x, 0, m}] / (-3)^n]]; (* Michael Somos, Apr 25 2011 *)
    a[ n_] := If[ n < 0, 0, With[ {m = 4 n + 1}, m! SeriesCoefficient[ InverseSeries[ Integrate[ Series[ (1 + x^4 / 12) ^ (-1/2), {x, 0, m + 1}], x]], {x, 0, m}]]]; (* Michael Somos, Apr 25 2011 *)
  • PARI
    {a(n) = my(m); if( n<0, 0, m = 4*n + 1; m! * polcoeff( serreverse( intformal( (1 + x^4 / 12 + x * O(x^m)) ^ (-1/2))), m))}; /* Michael Somos, Apr 25 2011 */
    
  • PARI
    {a(n) = my(A, m); if( n<0, 0, m = 4*n + 1; A = O(x); for( k=0, n, A = x + intformal( intformal( A^3 / 6))); m! * polcoeff( A, m))}; /* Michael Somos, Apr 25 2011 */

Formula

E.g.f.: sl(x) = Sum_{k>=0} (-12)^k * a(k) * x^(4*k + 1) / (4*k + 1)! where sl(x) = sin lemn(x) is the sine lemniscate function of Gauss. - Michael Somos, Apr 25 2011
a(0) = 1, a(n + 1) = (1 / 3) * Sum_{j=0..n} binomial( 4*n + 3, 4*j + 1) * a(j) * b(n - j) where b() is A144849.
G.f.: 1 / (1 - b(1)*x / (1 - b(2)*x / (1 - b(3)*x / ... ))) where b = A187756. - Michael Somos, Jan 03 2013

A260779 Coefficients arising from expansion of 1/(2*P(u)) in powers of u, where P is the Weierstrass P-function.

Original entry on oeis.org

1, -72, 48384, -134120448, 1055796166656, -18987644270149632, 676784742282773397504, -43249455805185586718834688, 4599203617006025540525554139136, -768291761151281123722697889747566592, 192565676807771292904270021964021234663424
Offset: 0

Views

Author

N. J. A. Sloane, Aug 02 2015

Keywords

Comments

This is for the lemniscate case where g2=4, g3=0. - Michael Somos, Jul 10 2024

Crossrefs

Cf. A144849.

Programs

  • Maple
    A260779 := proc(n)
        option remember;
        if n = 0 then
            1;
        else
            a :=0 ;
            for r from 0 to n-1 do
                s := n-1-r ;
                if s >=0 and s <= n-1 then
                a := a+procname(r)*procname(s) *binomial(4*n,4*r+2) ;
                end if;
            end do:
            a*(-12) ;
        end if;
    end proc: # R. J. Mathar, Aug 03 2015
  • Mathematica
    Block[{a}, a[n_] := If[n < 1, Boole[n == 0], Sum[Binomial[4 n, 4 j + 2] a[j] a[n - 1 - j], {j, 0, n - 1}]]; Array[(-12)^#*a[#] &, 11, 0]] (* Michael De Vlieger, Nov 20 2019, after Harvey P. Dale at A144849 *)
    a[ n_] := If[n<0, 0, With[{m = 4*n+2}, m!/2*SeriesCoefficient[ 1/WeierstrassP[u, {4, 0}], {u, 0, m}]]]; (* Michael Somos, Jul 10 2024 *)

Formula

Hurwitz (Eq. (84)) gives a recurrence.
a(n) = (-12)^n * A144849(n). - R. J. Mathar, Aug 03 2015
Showing 1-3 of 3 results.