A104203 Expansion of the sine lemniscate function sl(x).
1, 0, 0, 0, -12, 0, 0, 0, 3024, 0, 0, 0, -4390848, 0, 0, 0, 21224560896, 0, 0, 0, -257991277243392, 0, 0, 0, 6628234834692624384, 0, 0, 0, -319729080846260095008768, 0, 0, 0, 26571747463798134334265819136, 0, 0, 0, -3564202847752289659513902717468672, 0, 0
Offset: 1
Keywords
Examples
G.f. = x - 12*x^5 + 3024*x^9 - 4390848*x^13 + 21224560896*x^17 + ... Example of the recurrence relation a(n+2) = -2*sum {i+j+k = n} n!/(i!*j!*k!)*a(i)*a(j)*a(k) for n = 13: There are only 6 compositions of 13-2 = 11 that give a nonzero contribution to the sum, namely 11 = 9+1+1 = 1+9+1 = 1+1+9 and 11 = 5+5+1 = 5+1+5 = 1+5+5 and hence a(13) = -2*(3*11!/(9!*1!*1*)*a(9)*a(1)*a(1)+3*11!/(5!*5!*1!)*a(5)*a(5)*a(1)) = -4390848.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..229
- S. Binski and T. R. Hagedorn, Constructions on the Lemniscate
- Zachary P. Bradshaw and Christophe Vignat, Berndt-type Integrals: Unveiling Connections with Barnes Zeta and Jacobi Elliptic Functions, arXiv:2407.02365 [math.CA], 2024. See p. 9.
- Diego Dominici, Nested derivatives: A simple method for computing series expansions of inverse functions, arXiv:math/0501052v2 [math.CA], 2005.
- A. Gritsans and F. Sadyrbaev, Trigonometry of lemniscatic functions
- A. Gritsans and F. Sadyrbaev, Lemniscatic functions in the theory of the Emden-Fowler differential equation
- Markus Kuba and Alois Panholzer, Combinatorial families of multilabelled increasing trees and hook-length formulas, arXiv:1411.4587 [math.CO], 2014.
- Erik Vigren and Andreas Dieckmann, Simple Solutions of Lattice Sums for Electric Fields Due to Infinitely Many Parallel Line Charges, Symmetry (2020) Vol. 12, No. 6, 1040.
- Eric W. Weisstein, Lemniscate Function
Crossrefs
Programs
-
Mathematica
Drop[ Range[0, 37]! CoefficientList[ InverseSeries[ Series[ Integrate[1/(1 - x^4)^(1/2), x], {x, 0, 37}]], x], 1] (* Robert G. Wilson v, Mar 16 2005 *) a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ JacobiSD[x, 1/2] 2^((n - 1)/2), {x, 0, n}]]; (* Michael Somos, Jan 17 2017 *) a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ JacobiSN[x, -1], {x, 0, n}]]; (* Michael Somos, May 26 2021 *)
-
PARI
x='x+O('x^66);Vec(serlaplace(serreverse( intformal(1/sqrt(1-x^4))))) \\ Joerg Arndt, Mar 24 2017
Formula
From Peter Bala, Aug 25 2011: (Start)
The function sl(x) satisfies the differential equation sl''(x) = -2*sl^3(x) with initial conditions sl(0) = 0, sl'(0) = 1.
Recurrence relation:
a(n+2) = -2*sum {i+j+k = n} n!/(i!*j!*k!)*a(i)*a(j)*a(k).
The inverse of the sine lemniscate function may be defined as the algebraic integral
sl^(-1)(x) := Integral_{s=0..x} 1/sqrt(1-s^4) ds = x + x^5/10 + x^9/24 + 5*x^13/208 + ....
Series reversion produces the expansion
sl(x) = x - 12*x^5/5! + 3024*x^9/9! - 4390848*x^13/13! + ....
The coefficients in this expansion can be calculated using nested derivatives as follows (see [Dominici, Theorem 4.1]): Let f(x) = sqrt(1-x^4). Define the nested derivative D^n[f](x) by means of the recursion
D^0[f](x) = 1 and D^(n+1)[f](x) = d/dx(f(x)*D^n[f](x)) for n >= 0.
The coefficients in the expansion of D^n[f](x) in powers of f(x) are given in A145271. Then we have a(n) = D^(n-1)[f](0).
a(n) is divisible by 12^n and a(n)/12^n produces (a signed and aerated version of) A144853(n).
(End)
The function sl(x) satisfies the differential equation sl'(x)^2 + sl(x)^4 = 1 with initial conditions sl(0) = 0, sl'(0) = 1. - Michael Somos, Oct 12 2019
Extensions
More terms from Robert G. Wilson v, Mar 16 2005
a(37)- a(39) by Vincenzo Librandi, Mar 24 2017
Comments