cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A283831 Take every fourth term of A104203.

Original entry on oeis.org

1, -12, 3024, -4390848, 21224560896, -257991277243392, 6628234834692624384, -319729080846260095008768, 26571747463798134334265819136, -3564202847752289659513902717468672, 733070216072136922924207670741034860544, -221829664053602095461018886102097997267468288
Offset: 0

Views

Author

N. J. A. Sloane, Mar 20 2017

Keywords

Crossrefs

Cf. A104203.

Programs

  • PARI
    x='x+O('x^66); v=Vec(serlaplace(serreverse( intformal( 1/sqrt(1-x^4))))); vector(#v\4,n,v[4*n-3]) \\ Joerg Arndt, Mar 24 2017

Extensions

a(9) - a(11) from Vincenzo Librandi, Mar 24 2017

A159600 E.g.f. C(x) satisfies: C(x) = (1 - 2*S(x)^2)^(1/4), where S'(x) = C(x)^3 and C'(x) = -S(x) with C(0)=1.

Original entry on oeis.org

1, -1, 3, -27, 441, -11529, 442827, -23444883, 1636819569, -145703137041, 16106380394643, -2164638920874507, 347592265948756521, -65724760945840254489, 14454276753061349098587
Offset: 0

Views

Author

Paul D. Hanna, May 07 2009

Keywords

Comments

See A104203 for the expansion of the sine lemniscate function sl(x).
E.g.f. C(x) is an even function; zero terms are omitted.
Radius of convergence is |x| <= r:
r = sqrt(2)*(Pi/2)^(3/2)/gamma(3/4)^2 with
C(r) = gamma(3/4)^2/(Pi/2)^(3/2) where:
r = L/sqrt(2) where L=Lemniscate constant;
r = 1.8540746773013719184338503471952600...
C(r) = 0.76275976350181318806232598096361579...

Examples

			E.g.f.: C(x) = 1 - x^2/2! + 3*x^4/4! - 27*x^6/6! + 441*x^8/8! -+ ...
C(x)^2 = 1 - 2*x^2/2! + 12*x^4/4! - 144*x^6/6! + 3024*x^8/8! -+ ...
C(x)^3 = 1 - 3*x^2/2! + 27*x^4/4! - 441*x^6/6! + 11529*x^8/8! -+ ...
C(x)^4 = 1 - 4*x^2/2! + 48*x^4/4! - 1008*x^6/6! + 32256*x^8/8! -+ ...
C(x)^4 + 2*S(x)^2 = 1 where:
S(x) = x - 3*x^3/3! + 27*x^5/5! - 441*x^7/7! + 11529*x^9/9! + ...
S(x)^2 = 2*x^2/2! - 24*x^4/4! + 504*x^6/6! - 16128*x^8/8! +-...
From _Paul D. Hanna_, Jul 29 2011: (Start)
O.g.f.: 1 - x + 3*x^2 - 27*x^3 + 441*x^4 - 11529*x^5 + 442827*x^6 -+ ... + a(n)*x^n + ...
O.g.f.: 1/(1 + x/(1 + 2*x/(1 + 9*x/(1 + 8*x/(1 + 25*x/(1 + 18*x/(1 + 49*x/(1 + 32*x/(1-...))))))))) (continued fraction). (End)
		

Crossrefs

Cf. A159601 (S(x)); A193541, A193544: All of these have the same |a(n)|. - M. F. Hasler, Aug 31 2012
Cf. A129194.

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, With[ {m = 2 n}, m! SeriesCoefficient[ JacobiCN[ x, 1/2], {x, 0, m}]]]; (* Michael Somos, Apr 25 2011 *)
    a[ n_] := If[ n < 0, 0, With[ {m = 2 n}, With[ {s = InverseSeries[ Integrate[ Series[(1 - x^4 / 4) ^ (-1/2), {x, 0, m + 1}], x]]}, m! SeriesCoefficient[ Sqrt[ (2 - s^2) / (2 + s^2)], {x, 0, m}]]]]; (* Michael Somos, Apr 25 2011 *)
  • PARI
    {a(n)=local(S=x,C);for(i=0,2*n,S=intformal((1-2*S^2+O(x^(2*n+2)))^(3/4))); C=(1-2*S^2)^(1/4) ;(2*n)!*polcoeff(C,2*n)}
    
  • PARI
    {a(n) = my(A, m); if( n<0, 0, m = 2*n; A = serreverse( intformal( (1 - x^4 / 4 + x * O(x^m)) ^ (-1/2))); m! * polcoeff( sqrt( (2 - A^2) / (2 + A^2)), m))}; /* Michael Somos, Apr 25 2011 */
    
  • PARI
    {a(n) = local(C=1+x); for(i=1,n, C = exp( intformal( C * intformal(-1/C^3 + x*O(x^n)) ) ) ); n!*polcoeff(C,n)}
    for(n=0,20,print1(a(2*n),", "))
    
  • PARI
    {a(n) = local(C=1+x); for(i=1,n, C = exp( intformal( -1/C * intformal(C^3 + x*O(x^n)) ) ) ); n!*polcoeff(C,n)}
    for(n=0,20,print1(a(2*n),", "))

Formula

E.g.f. C(x) satisfies: C(x)^4 + 2*S(x)^2 = 1 where S(x) = Integral [1 - 2*S(x)^2]^(3/4) dx with S(0)=0; Left-shift of the Laplace transform of e.g.f. C(x) equals the Laplace transform of S(x).
E.g.f.: Sum_{k>=0} 2^k * a(k) * x^(2*k) / (2*k)! = cos lemn(x) where cos lemn(x) is the cosine lemniscate function of Gauss. - Michael Somos, Apr 25 2011
O.g.f.: 1/(1 + 1^2*x/(1 + 2^2/2*x/(1 + 3^2*x/(1 + 4^2/2*x/(1 + 5^2*x/(1 + 6^2/2*x/(1 + 7^2*x/(1 + 8^2/2*x/(1+...))))))))) (continued fraction). - Paul D. Hanna, Jul 29 2011
a(n) = (-1)^floor(n/2) * A193544(n) = (-1)^ceiling(n/2) * A193544(n) = -A159601(n). - M. F. Hasler, Aug 31 2012
G.f.: 1/Q(0) where p=1/2, Q(k) = 1 + x*(2*k+1)^2/( 1 + p*x*(2*k+2)^2/Q(k+1) ); (continued fraction due to Stieltjes T.J.). - Sergei N. Gladkovskii, Mar 22 2013
From Paul D. Hanna, Jun 02 2015: (Start)
E.g.f. C(x) satisfies:
(1) C(x) = exp( Integral C(x) * Integral -1/C(x)^3 dx dx ).
(2) C(x) = exp( Integral -1/C(x) * Integral C(x)^3 dx dx ).
(End)
G.f.: 1 / (1 + b(1)*x / (1 + b(2)*x / (1 + b(3)*x / ... ))) where b = A129194. - Michael Somos, Jan 03 2013

A159601 E.g.f. S(x) satisfies: S(x) = Integral [1 - 2*S(x)^2]^(3/4) dx with S(0)=0.

Original entry on oeis.org

1, -3, 27, -441, 11529, -442827, 23444883, -1636819569, 145703137041, -16106380394643, 2164638920874507, -347592265948756521, 65724760945840254489, -14454276753061349098587
Offset: 1

Views

Author

Paul D. Hanna, May 08 2009

Keywords

Comments

E.g.f. S(x) is an odd function; zero terms are omitted.
Apart from signs and initial term, same as A159600.
Radius of convergence of S(x) is |x| < r where:
r = (1/2)*Pi^(3/2)/gamma(3/4)^2 ;
r = L/sqrt(2) where L=Lemniscate constant ;
r = 1.8540746773013719184338503471952600...
Although S(x) diverges at |x|=r, the power series expansion:
C(x) = [1 - 2*S(x)^2]^(1/4) converges to
C(r) = gamma(3/4)^2/(Pi/2)^(3/2) = 0.7627597635...

Examples

			E.g.f: S(x) = x - 3*x^3/3! + 27*x^5/5! - 441*x^7/7! + 11529*x^9/9! +...
S(x)^2 = 2*x^2/2! - 24*x^4/4! + 504*x^6/6! - 16128*x^8/8! +-...
C(x)^4 + 2*S(x)^2 = 1 where:
C(x) = 1 - x^2/2! + 3*x^4/4! - 27*x^6/6! + 441*x^8/8! -+...
C(x)^2 = 1 - 2*x^2/2! + 12*x^4/4! - 144*x^6/6! + 3024*x^8/8! -+...
C(x)^3 = 1 - 3*x^2/2! + 27*x^4/4! - 441*x^6/6! + 11529*x^8/8! -+...
C(x)^4 = 1 - 4*x^2/2! + 48*x^4/4! - 1008*x^6/6! + 32256*x^8/8! -+...
1/C(x) = C(i*x) = 1 + x^2/2! + 3*x^4/4! + 27*x^6/6! + 441*x^8/8! +...
log(C(x)) = -x^2/2! - 12*x^6/6! - 3024*x^10/10! - 4390848*x^14/14! -...
Coefficients in log(C(x)) are given by A104203 (ignoring signs).
		

Crossrefs

Cf. A159600 (C(x)), A104203 (unsigned e.g.f. = S(x)/C(x)).

Programs

  • PARI
    {a(n)=local(S=x);for(i=0,2*n,S=intformal((1-2*S^2+O(x^(2*n)))^(3/4)));(2*n-1)!*polcoeff(S,2*n-1)}

Formula

E.g.f. S(x) satisfies: C(x)^4 + 2*S(x)^2 = 1 where
S'(x) = C(x)^3 and C'(x) = -S(x) with C(0)=1.
E.g.f. S(x) satisfies: S(x)/C(x) = e.g.f. of unsigned A104203 where C(x)^4 + 2*S(x)^2 = 1.
a(n) = -A159600(n), n>0. - M. F. Hasler, Aug 31 2012
G.f.: (1- 1/Q(0))/x, where Q(k) = 1 + x*(2*k+1)^2/(1 + 2*x*(k+1)^2/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 30 2013

A190904 a(n) = Sum_{k=0..n-1} cos(Pi*k/2)*binomial(n-1,k)*a(n-1-k)*a(k) for n > 0, a(0) = 1.

Original entry on oeis.org

1, 1, 1, 0, -3, -12, -27, 0, 441, 3024, 11529, 0, -442827, -4390848, -23444883, 0, 1636819569, 21224560896, 145703137041, 0, -16106380394643, -257991277243392, -2164638920874507, 0, 347592265948756521
Offset: 0

Views

Author

Peter Luschny, Jul 26 2011

Keywords

Crossrefs

Programs

  • Maple
    A190904 := proc(n) option remember; `if`(n=0,1,add(((1-irem(k,2))*(-1)^ iquo(k,2))*binomial(n-1,k)*A190904(n-1-k)*A190904(k),k=0..n-1)) end:
  • Mathematica
    a[0] = 1;
    a[n_] := a[n] =
      Sum[Mod[(k+1)^3, 4, -1] Binomial[n-1, k] a[n-k-1] a[k], {k, 0, n-1}];
    Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Jun 24 2019 *)

Formula

Let F(n,x) = Sum_{k=0..n-1} cos(Pi*k*x)*binomial(n-1,k)*F(n-1-k,x)* F(k,x), then
F(n, 0) = n! = A000142(n),
F(n, 1/2) = a(n),
F(n, 1) = 2^n*Euler_{n}(1) = A_{n}(-1) = A155585(n).
a(2*n) = A159601(n)*(-1)^floor((n-1)/2).
a(2*n+1) = A104203(2*n+1).
From Peter Bala, Aug 25 2011: (Start)
The sequence entries may be calculated as follows: Define the nested derivative D^n[f](x) by means of the recursion D^0[f](x) = 1 and D^(n+1)[f](x) = d/dx(f(x)*D^n[f](x)) for n >= 0. The coefficients in the expansion of D^n[f](x) in powers of f(x) can be found in A145271. Then we have
a(2*n) = D^(2*n)[sqrt(1+sin^2(x))](0)
a(2*n+1) = D^(2*n)[sqrt(1-x^4)](0).
The generating function involves the Jacobian elliptic functions. Define E(u,k) := cn(i*u,k)-i*sn(i*u,k) = 1+u+u^2/2!+(1+k^2)*u^3/3!+(1+4*k^2)*u^4/4!+..., where cn(u,k) and sn(u,k) are Jacobian elliptic functions of modulus k (see A060627 and A060628). Then the e.g.f. A(u) for this sequence is
A(u) := E(u,i) = 1+u+u^2/2!-3*u^4/4!-12*u^5/5!-27*u^6/6!+....
Proof: Using well-known properties of the Jacobian elliptic functions (see for example Abramowitz and Stegun, Chapter 16) we find the generating function A(u) satisfies the differential equation
(d/du)A(u) = dn(i*u,i)*A(u) = 1/2*(A(i*u)+A(-i*u))*A(u), which leads to a recurrence for the coefficients of A(u):
a(n+1) = sum{k=0..floor(n/2)} (-1)^k*binomial(n,2*k)*a(2*k)*a(n-2*k) with a(0) = 1. This recurrence is equivalent to the defining recurrence for this sequence given above.
End proof.
The generating function A(u) satisfies 1/A(u) = A(-u).
Compare entries of this sequence with those of A104203, A159600, A193541 and A193544.
(End)

A242240 Expansion of Jacobi sn(x, 1/2) / cd(x, 1/2).

Original entry on oeis.org

0, 1, 0, 0, 0, 12, 0, 0, 0, 3024, 0, 0, 0, 4390848, 0, 0, 0, 21224560896, 0, 0, 0, 257991277243392, 0, 0, 0, 6628234834692624384, 0, 0, 0, 319729080846260095008768, 0, 0, 0, 26571747463798134334265819136, 0, 0, 0, 3564202847752289659513902717468672, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, May 09 2014

Keywords

Examples

			G.f. = x + 12*x^5 + 3024*x^9 + 4390848*x^13 + 21224560896*x^17 + ...
		

Crossrefs

Cf. A104203.

Programs

  • Mathematica
    a[ n_] := If[ n<0, 0, n! SeriesCoefficient[ JacobiSN[x, 1/2] / JacobiCD[x, 1/2], {x, 0, n}]];
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( serreverse( intformal( (1 + x^4 + x * O(x^n))^(-1/2))), n))};

Formula

a(n) = |A104203(n)|.
E.g.f.: sn(x, 1/2) / cd(x, 1/2).
E.g.f. A(x) satisfies A(x)^2 = sinh(2 * Integral A(x) dx). - Michael Somos, Jun 17 2017

A261000 Unordered even-degree bilabeled increasing trees on 2n+1 nodes.

Original entry on oeis.org

1, 3, 189, 68607, 82908441, 251944606683, 1618221395188629, 19514714407120367127, 405452689572115086887601, 13596354857453497541480646963, 699110237190377161907394095173869, 52888313306236766686682435536884784047
Offset: 0

Views

Author

N. J. A. Sloane, Aug 09 2015

Keywords

Crossrefs

Closely related to A104203.
Cf. A258659.

Programs

  • Maple
    A261000aer := proc(n)
        option remember;
        local a,nloc,j,k,l;
        if n = 1 then
            1;
        else
            nloc := n-2 ;
            a :=0 ;
            for j from 0 to nloc-1 do
                for k from 0 to nloc-1-j do
                    l := nloc-1-j-k ;
                    if l >= 0 then
                        a := a+procname(j+1)*procname(k+1)*procname(l+1) * (2*nloc+1)!/(2*j+1)!/(2*k+1)!/(2*l+1)! ;
                    end if;
                end do:
            end do:
            %/2 ;
        end if;
    end proc:
    A261000 := proc(n)
        A261000aer(2*n+1) ;
    end proc:
    seq(A261000(n),n=0..15) ; # R. J. Mathar, Aug 18 2015
  • Mathematica
    terms = 12; nmax = 4 terms; A = 1; Do[A = Exp[Integrate[A^(1/2)*Integrate[1/A^(3/2), x], x] + O[x]^nmax], nmax]; A258659 = CoefficientList[A, x^2]*Range[0, nmax - 2, 2]!;
    a[n_] := A258659[[2 n + 1]];
    Table[a[n], {n, 0, terms - 1}] (* Jean-François Alcover, Nov 27 2017 *)
    a[ n_] := If[ n<0, 0, (-1)^n * (4*n+1)! * SeriesCoefficient[ JacobiSD[x, 1/2], {x, 0, 4*n+1}]]; (* Michael Somos, Sep 03 2022 *)
    a[ n_] := If[ n<0, 0, (-1)^n * (4*n+1)! * SeriesCoefficient[ x*Sqrt[1/x^2 / WeierstrassP[x, {1, 0}]], {x, 0, 4*n+1}]]; (* Michael Somos, Jul 02 2024 *)
    a[ n_] := If[ n<0, 0, (-1)^n * (4*n+1)! * SeriesCoefficient[
    InverseSeries[ Series[ x * Hypergeometric2F1[1/4, 1/2, 5/4, x^4/4], {x, 0, 4*n+1}]], {x, 0, 4*n+1}]]; (* Michael Somos, Jul 02 2024 *)
  • PARI
    {a(n) = if( n<0, 0, my(m = 4*n + 1); m! * polcoeff( serreverse( intformal( 1 / sqrt(1 + x^4/4 + x * O(x^m)) ) ), m))}; /* Michael Somos, Jun 17 2017 */

Formula

Kuba et al. (2014) gives a recurrence (see Theorem 7).
a(n) = A258659(2*n). - Michael Somos, Jun 17 2017

A322219 E.g.f.: S(x,q) = Integral C(x,q) * C(q*x,q) dx, such that C(x,q)^2 - S(x,q)^2 = 1, where S(x,q) = Sum_{n>=0} sum_{k=0..n*(n+1)/2} T(n,k)*x^n*y^k/n!, as an irregular triangle of coefficients T(n,k) read by rows.

Original entry on oeis.org

1, 1, 1, 1, 10, 1, 4, 1, 35, 91, 85, 20, 16, 24, 1, 84, 966, 1324, 2737, 632, 1200, 288, 384, 128, 192, 1, 165, 5082, 26818, 50941, 64329, 69816, 49872, 27568, 19776, 16448, 10176, 5760, 3840, 1280, 1920, 1, 286, 18447, 279136, 954239, 2550054, 2455233, 4013788, 2929104, 3264864, 1176640, 1815552, 834752, 731136, 394752, 491264, 141056, 164352, 69120, 46080, 15360, 23040, 1, 455, 53053, 1780207, 15627183, 51699869, 128611679, 187372653, 213804652, 257006976, 245800968, 195109120, 161177792, 123750592, 83792000, 69316224, 52893696, 35140992, 28215808, 18433536, 12687360, 8411648, 5945856, 2673664, 2300928, 967680, 645120, 215040, 322560
Offset: 0

Views

Author

Paul D. Hanna, Dec 16 2018

Keywords

Comments

Compare to Jacobi's elliptic function sn(x,k) = Integral cn(x,k)*dn(x,k) dx such that cn(x,k)^2 + sn(x,k)^2 = 1 and dn(x,k)^2 + k^2*sn(x,k)^2 = 1.
Right border equals A002866.
Row sums equal the tangent numbers (A000182).
Last n terms in row n of this triangle and of triangle A322218 are equal for n>0.

Examples

			E.g.f. S(x,q) = Sum_{n>=0} sum_{k=0..n*(n+1)/2} T(n,k)*x^(2*n+1)*q^(2*k)/(2*n+1)! starts
S(x,q) = x + (q^2 + 1)*x^3/3! + (4*q^6 + q^4 + 10*q^2 + 1)*x^5/5! + (24*q^12 + 16*q^10 + 20*q^8 + 85*q^6 + 91*q^4 + 35*q^2 + 1)*x^7/7! + (192*q^20 + 128*q^18 + 384*q^16 + 288*q^14 + 1200*q^12 + 632*q^10 + 2737*q^8 + 1324*q^6 + 966*q^4 + 84*q^2 + 1)*x^9/9! + (1920*q^30 + 1280*q^28 + 3840*q^26 + 5760*q^24 + 10176*q^22 + 16448*q^20 + 19776*q^18 + 27568*q^16 + 49872*q^14 + 69816*q^12 + 64329*q^10 + 50941*q^8 + 26818*q^6 + 5082*q^4 + 165*q^2 + 1)*x^11/11! + ...
such that S(x,q) = sinh( Integral C(q*x,q) dx ) and C(x,q)^2 = 1 + S(x,q)^2.
This irregular triangle of coefficients T(n,k) of x^(2*n+1)*q^(2*k)/(2*n+1)! in S(x,q) begins:
1;
1, 1;
1, 10, 1, 4;
1, 35, 91, 85, 20, 16, 24;
1, 84, 966, 1324, 2737, 632, 1200, 288, 384, 128, 192;
1, 165, 5082, 26818, 50941, 64329, 69816, 49872, 27568, 19776, 16448, 10176, 5760, 3840, 1280, 1920;
1, 286, 18447, 279136, 954239, 2550054, 2455233, 4013788, 2929104, 3264864, 1176640, 1815552, 834752, 731136, 394752, 491264, 141056, 164352, 69120, 46080, 15360, 23040;
1, 455, 53053, 1780207, 15627183, 51699869, 128611679, 187372653, 213804652, 257006976, 245800968, 195109120, 161177792, 123750592, 83792000, 69316224, 52893696, 35140992, 28215808, 18433536, 12687360, 8411648, 5945856, 2673664, 2300928, 967680, 645120, 215040, 322560;
1, 680, 129948, 8212360, 163115238, 1001312104, 3705217660, 7815443320, 15434182497, 17298854576, 23429393056, 21144463040, 25624143104, 18454639872, 18756800128, 12036914176, 12076688384, 7122865152, 7609525248, 4420732928, 4042876928, 2553473024, 2465701888, 1353586688, 1234018304, 619528192, 587358208, 311279616, 255467520, 117383168, 108036096, 42778624, 36814848, 15482880, 10321920, 3440640, 5160960; ...
RELATED SERIES.
C(x,q) = 1 + x^2/2! + (4*q^2 + 1)*x^4/4! + (24*q^6 + 16*q^4 + 20*q^2 + 1)*x^6/6! + (192*q^12 + 128*q^10 + 384*q^8 + 288*q^6 + 336*q^4 + 56*q^2 + 1)*x^8/8! + (1920*q^20 + 1280*q^18 + 3840*q^16 + 5760*q^14 + 10176*q^12 + 5888*q^10 + 12736*q^8 + 6448*q^6 + 2352*q^4 + 120*q^2 + 1)*x^10/10! + (23040*q^30 + 15360*q^28 + 46080*q^26 + 69120*q^24 + 164352*q^22 + 141056*q^20 + 341504*q^18 + 294912*q^16 + 431616*q^14 + 385472*q^12 + 472704*q^10 + 214016*q^8 + 93280*q^6 + 10032*q^4 + 220*q^2 + 1)*x^12/12! + ...
such that C(x,q) = cosh( Integral C(q*x,q) dx ).
		

Crossrefs

Cf. A322218 (C(x,q)), A000182 (row sums), A104203, A002866.

Programs

  • Mathematica
    rows = 8; m = 2 rows; s[x_, ] = x; c[, ] = 1; Do[s[x, q_] = Integrate[c[x, q] c[q x, q] + O[x]^m // Normal, x]; c[x_, q_] = 1 + Integrate[s[x, q] c[q x, q] + O[x]^m // Normal, x], {m}];
    CoefficientList[#, q^2]& /@ (CoefficientList[s[x, q], x] Range[0, m-1]!) // DeleteCases[#, {}]& // Flatten (* Jean-François Alcover, Dec 17 2018 *)
  • PARI
    {T(n,k) = my(S=x,C=1); for(i=1,2*n,
    S = intformal(C*subst(C,x,q*x) +O(x^(2*n+1)));
    C = 1 + intformal(S*subst(C,x,q*x)));
    (2*n+1)!*polcoeff( polcoeff(S,2*n+1,x),2*k,q)}
    for(n=0,10, for(k=0,n*(n+1)/2, print1( T(n,k),", "));print(""))

Formula

E.g.f. S(x,q) and related series C(x,q) satisfy:
(1) C(x,q)^2 - S(x,q)^2 = 1.
(2) C(x,q) = 1 + Integral S(x,q) * C(q*x,q) dx.
(3) S(x,q) = Integral C(x,q) * C(q*x,q) dx.
(4a) C(x,q) + S(x,q) = exp( Integral C(q*x,q) dx ).
(4b) C(x,q) = cosh( Integral C(q*x,q) dx ).
(4c) S(x,q) = sinh( Integral C(q*x,q) dx ).
(5) C(q*x,q) = 1 + q * Integral S(q*x,q) * C(q^2*x,q) dx.
(6) S(q*x,q) = q * Integral C(q*x,q) * C(q^2*x,q) dx.
(7a) C(q*x,q) + S(q*x,q) = exp( q * Integral C(q^2*x,q) dx ).
(7b) C(q*x,q) = cosh( q * Integral C(q^2*x,q) dx ).
(7c) S(q*x,q) = sinh( q * Integral C(q^2*x,q) dx ).
PARTICULAR ARGUMENTS.
S(x,q=0) = sinh(x).
S(x,q=1) = tan(x).
S(x,q=i) = -i * sl(i*x), where sl(x) is the sine lemniscate function (A104203).
FORMULAS FOR TERMS.
T(n, n*(n+1)/2) = 2^(n-1)*n! for n >= 1.
T(n, n*(n+1)/2 - k) = A322218(n, n*(n-1)/2 - k) for k = 0..n-1, n > 0.
Sum_{k=0..n*(n+1)/2} T(n,k) = A000182(n+1) for n >= 0.
Sum_{k=0..n*(n+1)/2} T(n,k)*(-1)^k = A104203(2*n+1) for n >= 0.
Showing 1-7 of 7 results.