cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A159605 E.g.f: Sum_{n>=1} a(n)*x^(2n-1)/(2n-1)! = Series_Reversion of e.g.f. S(x) of A159601.

Original entry on oeis.org

1, 3, 63, 3465, 363825, 62214075, 15740160975, 5524796502225, 2569030373534625, 1528573072253101875, 1132672646539548489375, 1022803399825212285905625, 1105650475211054481063980625, 1409704355894094463356575296875
Offset: 1

Views

Author

Paul D. Hanna, May 11 2009

Keywords

Examples

			E.g.f.: A(x) = x + 3*x^3/3! + 63*x^5/5! + 3465*x^7/7! +...
A(S(x)) = x where S(x) = Sum_{n>=1} A159601(n)*x^(2n-1)/(2n-1)! :
S(x) = x - 3*x^3/3! + 27*x^5/5! - 441*x^7/7! + 11529*x^9/9! +...
		

Crossrefs

Cf. A159601.

Programs

  • Mathematica
    Table[Product[(2k-3)(4k-5),{k,n}],{n,15}] (* Harvey P. Dale, Jan 31 2023 *)
  • PARI
    a(n)=prod(k=1,n,(2*k-3)*(4*k-5))

Formula

a(n) = Product_{k=1..n} (2k-3)(4k-5).
a(n) ~ Gamma(1/4) * 2^(3*n - 5/2) * n^(2*n - 7/4) / (sqrt(Pi) * exp(2*n)). - Vaclav Kotesovec, Nov 19 2023

A159600 E.g.f. C(x) satisfies: C(x) = (1 - 2*S(x)^2)^(1/4), where S'(x) = C(x)^3 and C'(x) = -S(x) with C(0)=1.

Original entry on oeis.org

1, -1, 3, -27, 441, -11529, 442827, -23444883, 1636819569, -145703137041, 16106380394643, -2164638920874507, 347592265948756521, -65724760945840254489, 14454276753061349098587
Offset: 0

Views

Author

Paul D. Hanna, May 07 2009

Keywords

Comments

See A104203 for the expansion of the sine lemniscate function sl(x).
E.g.f. C(x) is an even function; zero terms are omitted.
Radius of convergence is |x| <= r:
r = sqrt(2)*(Pi/2)^(3/2)/gamma(3/4)^2 with
C(r) = gamma(3/4)^2/(Pi/2)^(3/2) where:
r = L/sqrt(2) where L=Lemniscate constant;
r = 1.8540746773013719184338503471952600...
C(r) = 0.76275976350181318806232598096361579...

Examples

			E.g.f.: C(x) = 1 - x^2/2! + 3*x^4/4! - 27*x^6/6! + 441*x^8/8! -+ ...
C(x)^2 = 1 - 2*x^2/2! + 12*x^4/4! - 144*x^6/6! + 3024*x^8/8! -+ ...
C(x)^3 = 1 - 3*x^2/2! + 27*x^4/4! - 441*x^6/6! + 11529*x^8/8! -+ ...
C(x)^4 = 1 - 4*x^2/2! + 48*x^4/4! - 1008*x^6/6! + 32256*x^8/8! -+ ...
C(x)^4 + 2*S(x)^2 = 1 where:
S(x) = x - 3*x^3/3! + 27*x^5/5! - 441*x^7/7! + 11529*x^9/9! + ...
S(x)^2 = 2*x^2/2! - 24*x^4/4! + 504*x^6/6! - 16128*x^8/8! +-...
From _Paul D. Hanna_, Jul 29 2011: (Start)
O.g.f.: 1 - x + 3*x^2 - 27*x^3 + 441*x^4 - 11529*x^5 + 442827*x^6 -+ ... + a(n)*x^n + ...
O.g.f.: 1/(1 + x/(1 + 2*x/(1 + 9*x/(1 + 8*x/(1 + 25*x/(1 + 18*x/(1 + 49*x/(1 + 32*x/(1-...))))))))) (continued fraction). (End)
		

Crossrefs

Cf. A159601 (S(x)); A193541, A193544: All of these have the same |a(n)|. - M. F. Hasler, Aug 31 2012
Cf. A129194.

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, With[ {m = 2 n}, m! SeriesCoefficient[ JacobiCN[ x, 1/2], {x, 0, m}]]]; (* Michael Somos, Apr 25 2011 *)
    a[ n_] := If[ n < 0, 0, With[ {m = 2 n}, With[ {s = InverseSeries[ Integrate[ Series[(1 - x^4 / 4) ^ (-1/2), {x, 0, m + 1}], x]]}, m! SeriesCoefficient[ Sqrt[ (2 - s^2) / (2 + s^2)], {x, 0, m}]]]]; (* Michael Somos, Apr 25 2011 *)
  • PARI
    {a(n)=local(S=x,C);for(i=0,2*n,S=intformal((1-2*S^2+O(x^(2*n+2)))^(3/4))); C=(1-2*S^2)^(1/4) ;(2*n)!*polcoeff(C,2*n)}
    
  • PARI
    {a(n) = my(A, m); if( n<0, 0, m = 2*n; A = serreverse( intformal( (1 - x^4 / 4 + x * O(x^m)) ^ (-1/2))); m! * polcoeff( sqrt( (2 - A^2) / (2 + A^2)), m))}; /* Michael Somos, Apr 25 2011 */
    
  • PARI
    {a(n) = local(C=1+x); for(i=1,n, C = exp( intformal( C * intformal(-1/C^3 + x*O(x^n)) ) ) ); n!*polcoeff(C,n)}
    for(n=0,20,print1(a(2*n),", "))
    
  • PARI
    {a(n) = local(C=1+x); for(i=1,n, C = exp( intformal( -1/C * intformal(C^3 + x*O(x^n)) ) ) ); n!*polcoeff(C,n)}
    for(n=0,20,print1(a(2*n),", "))

Formula

E.g.f. C(x) satisfies: C(x)^4 + 2*S(x)^2 = 1 where S(x) = Integral [1 - 2*S(x)^2]^(3/4) dx with S(0)=0; Left-shift of the Laplace transform of e.g.f. C(x) equals the Laplace transform of S(x).
E.g.f.: Sum_{k>=0} 2^k * a(k) * x^(2*k) / (2*k)! = cos lemn(x) where cos lemn(x) is the cosine lemniscate function of Gauss. - Michael Somos, Apr 25 2011
O.g.f.: 1/(1 + 1^2*x/(1 + 2^2/2*x/(1 + 3^2*x/(1 + 4^2/2*x/(1 + 5^2*x/(1 + 6^2/2*x/(1 + 7^2*x/(1 + 8^2/2*x/(1+...))))))))) (continued fraction). - Paul D. Hanna, Jul 29 2011
a(n) = (-1)^floor(n/2) * A193544(n) = (-1)^ceiling(n/2) * A193544(n) = -A159601(n). - M. F. Hasler, Aug 31 2012
G.f.: 1/Q(0) where p=1/2, Q(k) = 1 + x*(2*k+1)^2/( 1 + p*x*(2*k+2)^2/Q(k+1) ); (continued fraction due to Stieltjes T.J.). - Sergei N. Gladkovskii, Mar 22 2013
From Paul D. Hanna, Jun 02 2015: (Start)
E.g.f. C(x) satisfies:
(1) C(x) = exp( Integral C(x) * Integral -1/C(x)^3 dx dx ).
(2) C(x) = exp( Integral -1/C(x) * Integral C(x)^3 dx dx ).
(End)
G.f.: 1 / (1 + b(1)*x / (1 + b(2)*x / (1 + b(3)*x / ... ))) where b = A129194. - Michael Somos, Jan 03 2013

A190904 a(n) = Sum_{k=0..n-1} cos(Pi*k/2)*binomial(n-1,k)*a(n-1-k)*a(k) for n > 0, a(0) = 1.

Original entry on oeis.org

1, 1, 1, 0, -3, -12, -27, 0, 441, 3024, 11529, 0, -442827, -4390848, -23444883, 0, 1636819569, 21224560896, 145703137041, 0, -16106380394643, -257991277243392, -2164638920874507, 0, 347592265948756521
Offset: 0

Views

Author

Peter Luschny, Jul 26 2011

Keywords

Crossrefs

Programs

  • Maple
    A190904 := proc(n) option remember; `if`(n=0,1,add(((1-irem(k,2))*(-1)^ iquo(k,2))*binomial(n-1,k)*A190904(n-1-k)*A190904(k),k=0..n-1)) end:
  • Mathematica
    a[0] = 1;
    a[n_] := a[n] =
      Sum[Mod[(k+1)^3, 4, -1] Binomial[n-1, k] a[n-k-1] a[k], {k, 0, n-1}];
    Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Jun 24 2019 *)

Formula

Let F(n,x) = Sum_{k=0..n-1} cos(Pi*k*x)*binomial(n-1,k)*F(n-1-k,x)* F(k,x), then
F(n, 0) = n! = A000142(n),
F(n, 1/2) = a(n),
F(n, 1) = 2^n*Euler_{n}(1) = A_{n}(-1) = A155585(n).
a(2*n) = A159601(n)*(-1)^floor((n-1)/2).
a(2*n+1) = A104203(2*n+1).
From Peter Bala, Aug 25 2011: (Start)
The sequence entries may be calculated as follows: Define the nested derivative D^n[f](x) by means of the recursion D^0[f](x) = 1 and D^(n+1)[f](x) = d/dx(f(x)*D^n[f](x)) for n >= 0. The coefficients in the expansion of D^n[f](x) in powers of f(x) can be found in A145271. Then we have
a(2*n) = D^(2*n)[sqrt(1+sin^2(x))](0)
a(2*n+1) = D^(2*n)[sqrt(1-x^4)](0).
The generating function involves the Jacobian elliptic functions. Define E(u,k) := cn(i*u,k)-i*sn(i*u,k) = 1+u+u^2/2!+(1+k^2)*u^3/3!+(1+4*k^2)*u^4/4!+..., where cn(u,k) and sn(u,k) are Jacobian elliptic functions of modulus k (see A060627 and A060628). Then the e.g.f. A(u) for this sequence is
A(u) := E(u,i) = 1+u+u^2/2!-3*u^4/4!-12*u^5/5!-27*u^6/6!+....
Proof: Using well-known properties of the Jacobian elliptic functions (see for example Abramowitz and Stegun, Chapter 16) we find the generating function A(u) satisfies the differential equation
(d/du)A(u) = dn(i*u,i)*A(u) = 1/2*(A(i*u)+A(-i*u))*A(u), which leads to a recurrence for the coefficients of A(u):
a(n+1) = sum{k=0..floor(n/2)} (-1)^k*binomial(n,2*k)*a(2*k)*a(n-2*k) with a(0) = 1. This recurrence is equivalent to the defining recurrence for this sequence given above.
End proof.
The generating function A(u) satisfies 1/A(u) = A(-u).
Compare entries of this sequence with those of A104203, A159600, A193541 and A193544.
(End)

A286306 a(n) = coefficient of x^(2*n)/(2*n)! in exp( integral ( sn(x, 1/2) / cd(x, 1/2) ) dx).

Original entry on oeis.org

1, 1, 3, 27, 441, 11529, 442827, 23444883, 1636819569, 145703137041, 16106380394643, 2164638920874507, 347592265948756521, 65724760945840254489, 14454276753061349098587, 3658147171522531111996803, 1055646229815910768764248289, 344553616791279239828059918881
Offset: 0

Views

Author

Michael Somos, May 05 2017

Keywords

Examples

			G.f. = 1 + x + 3*x^2 + 27*x^3 + 441*x^4 + 11529*x^5 + 442827*x^6 + ...
E.g.f. = 1 + 1*x^2/2! + 3*x^4/4! + 27*x^6/6! + 441*x^8/8! + 11529*x^10/10! + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, With[{m = 2 n}, m! SeriesCoefficient[ Exp[ Integrate[ JacobiSN[x, 1/2] / JacobiCD[x, 1/2], x]], {x, 0, m}]]];
    a:= With[{nmax = 110}, CoefficientList[Series[Exp[Integrate[JacobiSN[x, 1/2]/JacobiCD[x, 1/2], x]], {x, 0, nmax}], x]*Range[0, nmax]!][[1 ;; ;; 2]]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jul 29 2018 *)
  • PARI
    {a(n) = my(m); if( n<0, 0, m = 2*n; m! * polcoeff( exp( intformal( serreverse( intformal( (1 + x^4 + x * O(x^m))^(-1/2))))), m))};

Formula

Given e.g.f. A(x) = Sum_{n>=0} a(n) * x^(2*n) / (2*n)!, then 0 = 1 + 2*A'^2 - A*A''.
Given e.g.f. A(x), then A'(x) / A(x) = B(x) where B() is the e.g.f. for A242240.
Given e.g.f. A(x), 1 / A(x) = A(-x).
A159600(n) = (-1)^n * a(n). A159601(n) = -(-1)^n * a(n) if n>0.
A190904(2*n) = A193541(n) = (-1)^floor(n/2) * a(n). A193544(n) = (-1)^floor((n+1)/2) * a(n).
Showing 1-4 of 4 results.