cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A093954 Decimal expansion of Pi/(2*sqrt(2)).

Original entry on oeis.org

1, 1, 1, 0, 7, 2, 0, 7, 3, 4, 5, 3, 9, 5, 9, 1, 5, 6, 1, 7, 5, 3, 9, 7, 0, 2, 4, 7, 5, 1, 5, 1, 7, 3, 4, 2, 4, 6, 5, 3, 6, 5, 5, 4, 2, 2, 3, 4, 3, 9, 2, 2, 5, 5, 5, 7, 7, 1, 3, 4, 8, 9, 0, 1, 7, 3, 9, 1, 0, 8, 6, 9, 8, 2, 7, 4, 8, 6, 8, 4, 7, 7, 6, 4, 3, 8, 3, 1, 7, 3, 3, 6, 9, 1, 1, 9, 1, 3, 0, 9, 3, 4
Offset: 1

Views

Author

Eric W. Weisstein, Apr 19 2004

Keywords

Comments

The value is the length Pi*sqrt(2)/4 of the diagonal in the square with side length Pi/4 = Sum_{n>=0} (-1)^n/(2n+1) = A003881. The area of the circumcircle of this square is Pi*(Pi*sqrt(2)/8)^2 = Pi^3/32 = A153071. - Eric Desbiaux, Jan 18 2009
This is the value of the Dirichlet L-function of modulus m=8 at argument s=1 for the non-principal character (1,0,1,0,-1,0,-1,0). See arXiv:1008.2547. - R. J. Mathar, Mar 22 2011
Archimedes's-like scheme: set p(0) = sqrt(2), q(0) = 1; p(n+1) = 2*p(n)*q(n)/(p(n)+q(n)) (harmonic mean, i.e., 1/p(n+1) = (1/p(n) + 1/q(n))/2), q(n+1) = sqrt(p(n+1)*q(n)) (geometric mean, i.e., log(q(n+1)) = (log(p(n+1)) + log(q(n)))/2), for n >= 0. The error of p(n) and q(n) decreases by a factor of approximately 4 each iteration, i.e., approximately 2 bits are gained by each iteration. Set r(n) = (2*q(n) + p(n))/3, the error decreases by a factor of approximately 16 for each iteration, i.e., approximately 4 bits are gained by each iteration. For a similar scheme see also A244644. - A.H.M. Smeets, Jul 12 2018
The area of a circle circumscribing a unit-area regular octagon. - Amiram Eldar, Nov 05 2020

Examples

			1.11072073453959156175397...
From _Peter Bala_, Mar 03 2015: (Start)
Asymptotic expansion at n = 5000.
The truncated series Sum_{k = 0..5000 - 1} (-1)^floor(k/2)/(2*k + 1) = 1.110(6)207345(42)591561(18)3970(5238)1.... The bracketed digits show where this decimal expansion differs from that of Pi/(2*sqrt(2)). The numbers 1, -3, 57, -2763 must be added to the bracketed numbers to give the correct decimal expansion to 30 digits: Pi/(2*sqrt(2)) = 1.110(7)207345(39)591561(75)3970 (2475)1.... (End)
From _Peter Bala_, Nov 24 2016: (Start)
Case m = 1, n = 1:
Pi/(2*sqrt(2)) = 4*Sum_{k >= 0} (-1)^(1 + floor(k/2))/((2*k - 1)*(2*k + 1)*(2*k + 3)).
We appear to have the following asymptotic expansion for the tails of this series: for N divisible by 4, Sum_{k >= N/2} (-1)^floor(k/2)/((2*k - 1)*(2*k + 1)*(2*k + 3)) ~ 1/N^3 - 14/N^5 + 691/N^7 - 62684/N^9 - ..., where the coefficient sequence [1, 0, -14, 0, 691, 0, -62684, ...] appears to come from the e.g.f. (1/2!)*cosh(x)/cosh(2*x)*sinh(x)^2 = x^2/2! - 14*x^4/4! + 691*x^6/6! - 62684*x^8/8! + .... Cf. A019670.
For example, take N = 10^5. The truncated series Sum_{k = 0..N/2 -1} (-1)^(1+floor(k/2))/((2*k - 1)*(2*k + 1)*(2*k + 3)) = 0.27768018363489(8)89043849(11)61878(80026)6163(351171)58.... The bracketed digits show where this decimal expansion differs from that of (1/4)*Pi/(2*sqrt(2)). The numbers -1, 14, -691, 62684 must be added to the bracketed numbers to give the correct decimal expansion: (1/4)*Pi/(2*sqrt(2)) = 0.27768018363489(7) 89043849(25)61878(79335)6163(413855)58... (End)
		

References

  • J. M. Arnaudiès, P. Delezoide et H. Fraysse, Exercices résolus d'Analyse du cours de mathématiques - 2, Dunod, 1993, Exercice 5, p. 240.
  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press, 2006, p. 149.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.4.1, p. 20.
  • L. B. W. Jolley, Summation of Series, Dover, 1961, eq. 76, page 16.
  • Joel L. Schiff, The Laplace Transform: Theory and Applications, Springer-Verlag New York, Inc. (1999). See p. 149.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 53.

Crossrefs

Programs

  • Maple
    simplify( sum((cos((1/2)*k*Pi)+sin((1/2)*k*Pi))/(2*k+1), k = 0 .. infinity) );  # Peter Bala, Mar 09 2015
  • Mathematica
    RealDigits[Pi/Sqrt@8, 10, 111][[1]] (* Michael De Vlieger, Sep 23 2016 and slightly modified by Robert G. Wilson v, Jul 23 2018 *)
  • PARI
    default(realprecision, 20080); x=Pi*sqrt(2)/4; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b093954.txt", n, " ", d)); \\ Harry J. Smith, Jun 17 2009

Formula

Equals 1/A112628.
Equals Integral_{x=0..oo} 1/(x^4+1) dx. - Jean-François Alcover, Apr 29 2013
From Peter Bala, Feb 05 2015: (Start)
Pi/(2*sqrt(2)) = Sum_{k >= 0} binomial(2*k,k)*1/(2*k + 1)*(1/8)^k.
The integer sequences A(n) := 2^n*(2*n + 1)! and B(n) := A(n)*( Sum {k = 0..n} binomial(2*k,k)*1/(2*k + 1)*(1/8)^k ) both satisfy the second order recurrence equation u(n) = (12*n^2 + 1)*u(n-1) - 4*(n - 1)*(2*n - 1)^3*u(n-2). From this observation we can obtain the continued fraction expansion Pi/(2*sqrt(2)) = 1 + 1/(12 - 4*3^3/(49 - 4*2*5^3/(109 - 4*3*7^3/(193 - ... - 4*(n - 1)*(2*n - 1)^3/((12*n^2 + 1) - ... ))))). Cf. A002388 and A019670. (End)
From Peter Bala, Mar 03 2015: (Start)
Pi/(2*sqrt(2)) = Sum_{k >= 0} (-1)^floor(k/2)/(2*k + 1) = limit (n -> infinity) Sum_{k = -n .. n - 1} (-1)^k/(4*k + 1). See Wells.
We conjecture the asymptotic expansion Pi/(2*sqrt(2)) - Sum {k = 0..n - 1} (-1)^floor(k/2)/(2*k + 1) ~ 1/(2*n) - 3/(2*n)^3 + 57/(2*n)^5 - 2763/(2*n)^7 + ..., where n is a multiple of 4 and the sequence of unsigned coefficients [1, 3, 57, 2763, ...] is A000281. An example with n = 5000 is given below. (End)
From Peter Bala, Sep 21 2016: (Start)
c = 2 * Sum_{k >= 0} (-1)^k * (4*k + 2)/((4*k + 1)*(4*k + 3)) = A181048 + A181049. The asymptotic expansion conjectured above follows from the asymptotic expansions given in A181048 and A181049.
c = 1/2 * Integral_{x = 0..Pi/2} sqrt(tan(x)) dx. (End)
From Peter Bala, Nov 24 2016: (Start)
Let m be an odd integer and n a nonnegative integer. Then Pi/(2*sqrt(2)) = 2^n*m^(2*n)*(2*n)!*Sum_{k >= 0} (-1)^(n+floor(k/2)) * 1/Product_{j = -n..n} (2*k + 1 + 2*m*j). Cf. A003881.
In the particular case m = 1 the result has the equivalent form: for n a nonnegative integer, Pi/(2*sqrt(2)) = 2^n*(2*n)!*Sum_{k >= 0} (-1)^(n+k)*(8*k + 4)* 1/Product_{j = -n..n+1} (4*k + 2*j + 1). The case m = 1, n = 1 is considered in the Example section below.
Let m be an odd integer and n a nonnegative integer. Then Pi/(2*sqrt(2)) = 4^n*m^(2*n)*(2*n)!*Sum_{k >= 0} (-1)^(n+floor(k/2)) * 1/Product_{j = -n..n} (2*k + 1 + 4*m*j). (End)
Equals Integral_{x = 0..oo} cosh(x)/cosh(2*x) dx. - Peter Bala, Nov 01 2019
Equals Sum_{k>=1} A188510(k)/k = Sum_{k>=1} Kronecker(-8,k)/k = 1 + 1/3 - 1/5 - 1/7 + 1/9 + 1/11 - 1/13 - 1/15 + ... - Jianing Song, Nov 16 2019
From Amiram Eldar, Jul 16 2020: (Start)
Equals Product_{k>=1} (1 - (-1)^k/(2*k+1)).
Equals Integral_{x=0..oo} dx/(x^2 + 2).
Equals Integral_{x=0..Pi/2} dx/(sin(x)^2 + 1). (End)
Equals Integral_{x=0..oo} x^2/(x^4 + 1) dx (Arnaudiès). - Bernard Schott, May 19 2022
Equals Integral_{x = 0..1} 1/(2*x^2 + (1 - x)^2) dx. - Peter Bala, Jul 22 2022
Equals Integral_{x = 0..1} 1/(1 - x^4)^(1/4) dx. - Terry D. Grant, Mar 17 2023
Equals 1/Product_{p prime} (1 - Kronecker(-8,p)/p), where Kronecker(-8,p) = 0 if p = 2, 1 if p == 1 or 3 (mod 8) or -1 if p == 5 or 7 (mod 8). - Amiram Eldar, Dec 17 2023
Equals A068465*A068467. - R. J. Mathar, Jun 27 2024
From Stefano Spezia, Jun 05 2025: (Start)
Equals Sum_{k>=1} (-1)^(k+1)(1/(4*k - 3) + 1/(4*k - 1)).
Equals Product_{k=0..oo} (1 + (-1)^k/(2*k + 3)).
Equals Integral_{x=0..oo} 1/(2*x^2 + 1).
Equals Integral_{x=0..1} 1/((1 + x^2)*sqrt(1 - x^2)). (End)

A016814 a(n) = (4*n + 1)^2.

Original entry on oeis.org

1, 25, 81, 169, 289, 441, 625, 841, 1089, 1369, 1681, 2025, 2401, 2809, 3249, 3721, 4225, 4761, 5329, 5929, 6561, 7225, 7921, 8649, 9409, 10201, 11025, 11881, 12769, 13689, 14641, 15625, 16641, 17689, 18769, 19881, 21025, 22201, 23409, 24649, 25921, 27225, 28561, 29929
Offset: 0

Views

Author

Keywords

Comments

A bisection of A016754. Sequence arises from reading the line from 1, in the direction 1, 25, ..., in the square spiral whose vertices are the squares A000290. - Omar E. Pol, May 24 2008

Crossrefs

Sequences of the form (m*n+1)^2: A000012 (m=0), A000290 (m=1), A016754 (m=2), A016778 (m-3), this sequence (m=4), A016862 (m=5), A016922 (m=6), A016994 (m=7), A017078 (m=8), A017174 (m=9), A017282 (m=10), A017402 (m=11), A017534 (m=12), A134934 (m=14).

Programs

Formula

a(n) = a(n-1) + 32*n - 8, n > 0. - Vincenzo Librandi, Dec 15 2010
From George F. Johnson, Sep 28 2012: (Start)
G.f.: (1 + 22*x + 9*x^2)/(1 - x)^3.
a(n+1) = a(n) + 16 + 8*sqrt(a(n)).
a(n+1) = 2*a(n) - a(n-1) + 32 = 3*a(n) - 3*a(n-1) + a(n-2).
a(n-1)*a(n+1) = (a(n) - 16)^2 ; a(n+1) - a(n-1) = 16*sqrt(a(n)).
a(n) = A016754(2*n) = (A016813(n))^2. (End)
Sum_{n>=0} 1/a(n) = G/2 + Pi^2/16, where G is the Catalan constant (A006752). - Amiram Eldar, Jun 28 2020
Product_{n>=1} (1 - 1/a(n)) = 2*Gamma(5/4)^2/sqrt(Pi) = 2 * A068467^2 * A087197. - Amiram Eldar, Feb 01 2021
From G. C. Greubel, Dec 28 2022: (Start)
a(2*n) = A017078(n).
a(2*n+1) = A017126(n).
E.g.f.: (1 + 24*x + 16*x^2)*exp(x). (End)
a(n) = A272399(n+1) - A014105(n). - Leo Tavares, Dec 24 2023

A202623 Decimal expansion of (1/3)! = Gamma(4/3).

Original entry on oeis.org

8, 9, 2, 9, 7, 9, 5, 1, 1, 5, 6, 9, 2, 4, 9, 2, 1, 1, 2, 1, 8, 5, 6, 4, 3, 1, 3, 6, 5, 8, 2, 2, 5, 8, 8, 1, 3, 7, 6, 2, 2, 9, 7, 9, 2, 6, 5, 2, 4, 3, 3, 7, 0, 0, 3, 1, 6, 8, 0, 9, 4, 4, 2, 5, 3, 0, 1, 3, 9, 2, 0, 3, 3, 8, 9, 2, 4, 7, 9, 3, 9, 8, 4, 6, 9, 9, 4, 2, 9, 6, 3, 4, 7, 0, 6, 2, 9, 2, 9, 8, 0, 6, 3, 8, 6, 3, 4, 9, 7, 3, 3, 3, 5, 7, 4, 2, 1, 1, 1, 1, 9, 0, 6, 3, 6, 1, 5, 2, 3, 1, 6, 8, 1, 5, 7, 4, 1, 9, 9, 9, 2, 5, 7, 1, 1, 2, 2, 5, 6, 9
Offset: 0

Views

Author

N. J. A. Sloane, Dec 29 2011

Keywords

Examples

			0.89297951156924921121856431365822588137622979265243370031680...
		

Crossrefs

Programs

  • Macsyma
    4^(8/9)*%PI^(2/3)*THETA[3](0,%E^-(16*%PI/SQRT(3)))^(2/3)/(3^(1/4)*(2^(7/16)*(SQRT(2)-1)^(1/4)/((SQRT(3)-1)^(1/8)*(SQRT(3)-SQRT(2))^(1/4))+1/(2^(1/4)*SQRT(SQRT(3)+1))+1)^(2/3))
    /* This is exact, but degrades to 50+ digits if you replace
    THETA[3](0,%E^-(16*%PI/SQRT(3)))
    by 1+2*%E^-(16*%PI/SQRT(3)) */
    /* R. W. Gosper, Posting to Math Fun Mailing List, Dec 27 2011 */
  • Maple
    evalf(GAMMA(4/3)) ;
  • Mathematica
    RealDigits[(1/3)!,10,150][[1]] (* or *) RealDigits[Gamma[4/3],10,150] [[1]] (* Harvey P. Dale, Sep 03 2016 *)

Formula

A formula from R. W. Gosper, Posting to Math Fun Mailing List, Dec 27 2011:
Equals (1/3) * (2*2^(7/9)*((Pi*EllipticTheta[3, 0, E^(-((16*Pi)/Sqrt[3]))])/ (1 + 1/(2^(1/4)*Sqrt[1 + Sqrt[3]]) + (2^(7/16)*((-1 + Sqrt[2])/(-Sqrt[2] + Sqrt[3]))^(1/4))/(-1+Sqrt[3])^(1/8)))^(2/3))/3^(1/4).
Equals Integral_{0..oo} exp(-x^3) dx. [Jean-François Alcover, Mar 29 2013]
Equals A073005/3. - R. J. Mathar, Jan 15 2021
Equals 3*Integral_{-1/e..0} (-LambertW(-1,x))^(1/3)-(-LambertW(x))^(1/3) dx. - Gleb Koloskov, Jun 07 2021

Extensions

Corrected and extended by Harvey P. Dale, Sep 03 2016

A203125 Decimal expansion of (1/8)! = Gamma(9/8).

Original entry on oeis.org

9, 4, 1, 7, 4, 2, 6, 9, 9, 8, 4, 9, 7, 0, 1, 4, 8, 8, 0, 8, 7, 4, 0, 3, 7, 3, 0, 1, 5, 1, 8, 9, 1, 7, 0, 3, 0, 7, 6, 3, 0, 2, 4, 4, 8, 5, 1, 8, 6, 3, 4, 4, 9, 2, 6, 2, 2, 8, 9, 0, 9, 8, 7, 2, 2, 2, 0, 8, 2, 9, 5, 7, 1, 4, 9, 8, 6, 3, 3, 0, 1, 6, 0, 4, 1, 9, 1, 0, 7, 8, 3, 5, 1, 2, 9, 4, 6, 0, 6
Offset: 0

Views

Author

N. J. A. Sloane, Dec 29 2011

Keywords

Examples

			.94174269984970148808740373015189170307630244851863449262289...
		

Crossrefs

Programs

Formula

Equals A203142/8. - R. J. Mathar, Jan 15 2021
A203144 *this *A231863 *A011006 = A068467. - R. J. Mathar, Jan 15 2021
Equals Integral_{x=0..oo} exp(-x^8) dx. - Ilya Gutkovskiy, Sep 18 2021

A203126 Decimal expansion of (1/6)! = Gamma(7/6).

Original entry on oeis.org

9, 2, 7, 7, 1, 9, 3, 3, 3, 6, 3, 0, 0, 3, 9, 2, 0, 0, 7, 0, 8, 3, 4, 9, 4, 8, 2, 5, 3, 4, 6, 2, 1, 0, 1, 8, 5, 6, 6, 4, 6, 6, 5, 1, 9, 1, 4, 5, 4, 7, 5, 5, 7, 6, 9, 3, 6, 1, 2, 4, 1, 0, 4, 3, 8, 7, 1, 5, 1, 2, 5, 0, 4, 6, 9, 6, 3, 3, 7, 1, 7, 5, 8, 3, 8, 9, 8, 2, 7, 5, 6, 0, 3, 5, 0, 3, 6, 2, 5
Offset: 0

Views

Author

N. J. A. Sloane, Dec 29 2011

Keywords

Examples

			.92771933363003920070834948253462101856646651914547557693612...
		

Crossrefs

Programs

Formula

Equals A175379/6. - R. J. Mathar, Jan 15 2021
A073006 * this * A231863 * A329219 = A202623. - R. J. Mathar, Jan 15 2021
Equals Integral_{x=0..oo} exp(-x^6) dx. - Ilya Gutkovskiy, Sep 18 2021

A377731 Decimal expansion of 4 * sqrt(2*Pi) * Gamma(5/4) / (3 * Gamma(3/4)).

Original entry on oeis.org

2, 4, 7, 2, 0, 9, 9, 5, 6, 9, 7, 3, 5, 1, 6, 2, 5, 5, 7, 9, 1, 1, 8, 0, 0, 4, 6, 2, 9, 2, 7, 0, 1, 3, 3, 9, 4, 9, 5, 6, 7, 9, 8, 4, 3, 1, 3, 6, 2, 3, 5, 5, 8, 7, 4, 1, 1, 4, 5, 7, 0, 7, 2, 6, 7, 4, 1, 3, 6, 2, 3, 6, 9, 1, 1, 7, 4, 9, 3, 3, 0, 4, 4, 7, 6, 3, 6, 2, 4, 8, 2, 2, 0, 0, 4, 9, 5, 8, 6, 3, 0, 3, 7, 0, 2
Offset: 1

Views

Author

Amiram Eldar, Nov 05 2024

Keywords

Comments

This constant appears in asymptotic formulas related to A211996 and A377732.

Examples

			2.47209956973516255791180046292701339495679843136235...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[4 * Sqrt[2*Pi] * Gamma[5/4] / (3 * Gamma[3/4]), 10, 120][[1]]
  • PARI
    4 * sqrt(2*Pi) * gamma(5/4) / (3 * gamma(3/4))

A256667 Decimal expansion of Integral_{x=0..Pi/2} sqrt(2-sin(x)^2) dx, an elliptic integral once studied by John Landen.

Original entry on oeis.org

1, 9, 1, 0, 0, 9, 8, 8, 9, 4, 5, 1, 3, 8, 5, 6, 0, 0, 8, 9, 5, 2, 3, 8, 1, 0, 4, 1, 0, 8, 5, 7, 2, 1, 6, 4, 5, 9, 5, 4, 9, 8, 3, 8, 0, 7, 3, 2, 3, 6, 3, 7, 3, 6, 0, 5, 4, 0, 2, 4, 8, 3, 2, 8, 3, 7, 3, 5, 9, 7, 9, 0, 0, 6, 0, 7, 1, 6, 4, 9, 6, 0, 5, 3, 3, 0, 9, 0, 5, 4, 4, 7, 2, 5, 6, 1, 1, 2, 4, 1, 4, 1, 1, 0, 2
Offset: 1

Views

Author

Jean-François Alcover, Apr 07 2015

Keywords

Comments

Arclength on sine from origin to first maximum point. - Clark Kimberling, Jul 01 2020

Examples

			1.91009889451385600895238104108572164595498380732363736...
		

References

  • Mark Pinsky, Björn Birnir, Probability, Geometry and Integrable Systems (Cambridge University Press 2007), p. 289.

Crossrefs

Cf. A062539 (Lemniscate constant), A068465 (Gamma(3/4)), A068467 (Gamma(5/4)).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); (1/Sqrt(2*Pi(R)))*(Gamma(3/4)^2 + 4*Gamma(5/4)^2); // G. C. Greubel, Oct 07 2018
  • Mathematica
    RealDigits[(1/Sqrt[2*Pi])*(Gamma[3/4]^2 + 4*Gamma[5/4]^2), 10, 105] // First
  • PARI
    default(realprecision, 100); (1/sqrt(2*Pi))*(gamma(3/4)^2 + 4*gamma(5/4)^2) \\ G. C. Greubel, Oct 07 2018
    

Formula

Equals (1/sqrt(2*Pi))*(Gamma(3/4)^2 + 4*Gamma(5/4)^2).
Equals sqrt(2)*E(Pi/2 | 1/2), where E(phi|m) is the elliptic integral of the second kind.
Equals (L^2 + Pi)/(2*L), where L is the lemniscate constant 2.622...

A206769 Decimal expansion of the Fresnel integral Integral_{x=0..oo} sin(x^4) dx.

Original entry on oeis.org

3, 4, 6, 8, 6, 5, 2, 1, 1, 0, 2, 3, 8, 0, 9, 4, 9, 6, 0, 4, 2, 0, 3, 5, 1, 0, 0, 0, 4, 7, 1, 1, 3, 3, 2, 5, 3, 1, 8, 1, 1, 8, 7, 8, 0, 5, 7, 1, 6, 2, 0, 0, 8, 2, 3, 3, 6, 4, 4, 9, 2, 4, 3, 8, 6, 8, 1, 1, 8, 2, 9
Offset: 0

Views

Author

R. J. Mathar, Jan 10 2013

Keywords

Comments

Imaginary part associated with A206161.

Examples

			0.3468652110238094960420351000471...
		

Crossrefs

Programs

  • Maple
    evalf(Pi*sin(Pi/8)/GAMMA(3/4)/2^(3/2)) ;
  • Mathematica
    RealDigits[Pi * Sin[Pi/8] / (2^(3/2) * Gamma[3/4]), 10, 120][[1]] (* Amiram Eldar, Aug 23 2024 *)

Formula

Equals A093954 * A182168 / A068465.
(this constant)^2 + A206161 ^2 = A068467 ^2.

A256929 Decimal expansion of Sum_{k>=1} (zeta(2*k)/k)*(1/2)^(4*k).

Original entry on oeis.org

1, 0, 5, 0, 0, 9, 1, 1, 5, 0, 0, 9, 4, 8, 2, 2, 1, 0, 0, 1, 7, 5, 7, 9, 1, 6, 9, 1, 6, 5, 7, 9, 3, 8, 5, 9, 5, 3, 4, 0, 4, 4, 6, 1, 1, 3, 7, 4, 9, 2, 8, 6, 9, 0, 3, 3, 2, 6, 0, 3, 0, 5, 7, 2, 3, 2, 0, 4, 7, 3, 3, 6, 9, 3, 0, 2, 8, 4, 0, 0, 6, 3, 7, 4, 8, 2, 8, 2, 7, 9, 7, 8, 0, 8, 6, 1, 6, 7, 6, 3, 8, 9, 0
Offset: 0

Views

Author

Jean-François Alcover, Apr 13 2015

Keywords

Examples

			0.1050091150094822100175791691657938595340446113749286903326...
		

References

  • H. M. Srivastava and Junesang Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Insights, 2011, p. 272, eq. (30).

Crossrefs

Programs

  • Mathematica
    RealDigits[Log[Pi/(2*Sqrt[2])], 10, 103] // First
  • PARI
    log(Pi/(2*sqrt(2))) \\ Amiram Eldar, Oct 12 2024

Formula

Equals log(Gamma(3/4)*Gamma(5/4)) = log(A068465*A068467).
Equals log(Pi/(2*sqrt(2))) = log(A093954).
Equals -Sum_{k>=1} log(1 - 1/(4*k)^2). - Amiram Eldar, Aug 12 2020

Extensions

Name corrected by Amiram Eldar, Oct 12 2024

A257094 Decimal expansion of Gamma(9/4).

Original entry on oeis.org

1, 1, 3, 3, 0, 0, 3, 0, 9, 6, 3, 1, 9, 3, 4, 6, 3, 4, 7, 4, 7, 8, 3, 3, 9, 1, 1, 1, 2, 0, 8, 6, 4, 7, 5, 0, 0, 9, 3, 5, 9, 8, 9, 9, 0, 0, 9, 0, 0, 0, 2, 0, 4, 5, 8, 5, 7, 2, 9, 3, 0, 6, 2, 4, 8, 6, 5, 5, 9, 9, 7, 6, 3, 6, 0, 5, 8, 5, 2, 8, 5, 0, 5, 0, 5, 7, 3, 7, 5, 4, 2, 7, 2, 6, 0, 5, 7, 5, 9, 3, 8, 6
Offset: 1

Views

Author

Jean-François Alcover, Apr 16 2015

Keywords

Examples

			1.13300309631934634747833911120864750093598990090002...
		

Crossrefs

Cf. A068466 (Gamma(1/4)), A068465 (3/4), A068467 (5/4), A203130 (7/4), A257095 (11/4).

Programs

  • Mathematica
    RealDigits[Gamma[9/4], 10, 102] // First
  • PARI
    gamma(9/4) \\ Michel Marcus, Apr 16 2015

Formula

Equals (5/16)*Gamma(1/4).
Showing 1-10 of 17 results. Next