cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A073005 Decimal expansion of Gamma(1/3).

Original entry on oeis.org

2, 6, 7, 8, 9, 3, 8, 5, 3, 4, 7, 0, 7, 7, 4, 7, 6, 3, 3, 6, 5, 5, 6, 9, 2, 9, 4, 0, 9, 7, 4, 6, 7, 7, 6, 4, 4, 1, 2, 8, 6, 8, 9, 3, 7, 7, 9, 5, 7, 3, 0, 1, 1, 0, 0, 9, 5, 0, 4, 2, 8, 3, 2, 7, 5, 9, 0, 4, 1, 7, 6, 1, 0, 1, 6, 7, 7, 4, 3, 8, 1, 9, 5, 4, 0, 9, 8, 2, 8, 8, 9, 0, 4, 1, 1, 8, 8, 7, 8, 9, 4, 1, 9, 1, 5
Offset: 1

Views

Author

Robert G. Wilson v, Aug 03 2002

Keywords

Comments

Nesterenko proves that this constant is transcendental (he cites Chudnovsky as the first to show this); in fact it is algebraically independent of Pi and exp(sqrt(3)*Pi) over Q. - Charles R Greathouse IV, Nov 11 2013

Examples

			Gamma(1/3) = 2.6789385347077476336556929409746776441286893779573011009...
		

References

  • H. B. Dwight, Tables of Integrals and other Mathematical Data. 860.18, 860.19 in Definite Integrals. New York, U.S.A.: Macmillan Publishing, 1961, p. 230.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.5.4, p. 33.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 43, equation 43:4:8 at page 413.

Crossrefs

Programs

  • Magma
    R:= RealField(100); SetDefaultRealField(R); Gamma(1/3); // G. C. Greubel, Mar 10 2018
  • Mathematica
    RealDigits[ N[ Gamma[1/3], 110]][[1]]
  • PARI
    default(realprecision, 1080); x=gamma(1/3); for (n=1, 1000, d=floor(x); x=(x-d)*10; write("b073005.txt", n, " ", d)); \\ Harry J. Smith, Apr 19 2009
    

Formula

this * A073006 = A186706. - R. J. Mathar, Jan 15 2021
From Amiram Eldar, Jun 25 2021: (Start)
Equals 2^(7/9) * Pi^(1/3) * K((sqrt(3)-1)/(2*sqrt(2)))^(1/3)/3^(1/12), where K is the complete elliptic integral of the first kind.
Equals 2^(7/9) * Pi^(2/3) /(AGM(2, sqrt(2+sqrt(3)))^(1/3) * 3^(1/12)), where AGM is the arithmetic-geometric mean. (End)
From Andrea Pinos, Aug 12 2023: (Start)
Equals Integral_{x=0..oo} 3*exp(-(x^3)) dx = 3*A202623.
General result: Gamma(1/n) = Integral_{x=0..oo} n*exp(-(x^n)) dx. (End)
Equals 3*A202623 = exp(A256165). - Hugo Pfoertner, Jun 28 2024
Equals (2^(1/3)*Pi*C*3^(1/2))^(1/3), where C = A118292 = Integral {0..1} 2/sqrt(1-x^3) is the transcendental butterfly constant. - Jan Lügering, Feb 08 2025

A068467 Decimal expansion of (1/4)! = Gamma(5/4).

Original entry on oeis.org

9, 0, 6, 4, 0, 2, 4, 7, 7, 0, 5, 5, 4, 7, 7, 0, 7, 7, 9, 8, 2, 6, 7, 1, 2, 8, 8, 9, 6, 6, 9, 1, 8, 0, 0, 0, 7, 4, 8, 7, 9, 1, 9, 2, 0, 7, 2, 0, 0, 1, 6, 3, 6, 6, 8, 5, 8, 3, 4, 4, 4, 9, 9, 8, 9, 2, 4, 7, 9, 8, 1, 0, 8, 8, 4, 6, 8, 2, 2, 8, 0, 4, 0, 4, 5, 9, 0, 0, 3, 4, 1, 8, 0, 8, 4, 6, 0, 7, 5, 0, 9, 0, 3, 6
Offset: 0

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Examples

			0.906402477055477077982671288966918000748791920720...
		

Crossrefs

Cf. A202623.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Gamma(5/4); // G. C. Greubel, Mar 11 2018
  • Maple
    evalf(GAMMA(5/4)) ; # R. J. Mathar, Jan 10 2013
  • Mathematica
    RealDigits[Gamma[5/4],10,120][[1]] (* Harvey P. Dale, Aug 23 2013 *)
  • PARI
    gamma(5/4) \\ Altug Alkan, Sep 18 2016
    

Formula

2^(3/4)*(2/e^(16*Pi) + 1)* Pi^(3/4)/(2^(13/16)/(sqrt(2) - 1)^(1/4) + 2^(1/4) + 1) is a very good approximation (~88 digits) which becomes exact if you replace (2/e^(16*Pi) + 1) by EllipticTheta[3,0,exp(-(16*Pi))]. [R. W. Gosper, Posting to Math Fun Mailing List, Dec 27 2011.]
Equals A068466 /4 . - R. J. Mathar, Jan 10 2013
Also equals integral_{0..oo} exp(-x^4) dx. - Jean-François Alcover, Mar 29 2013
Equals 2^(-5/4)*Pi^(3/4)*Product_{k>=1} tanh(Pi*k/2). - Keshav Raghavan, Aug 25 2016

Extensions

Removed leading zero and adjusted offset, R. J. Mathar, Feb 06 2009
Additional reference from Joerg Arndt, Dec 28 2011
Edited by N. J. A. Sloane, Dec 28 2011

A203125 Decimal expansion of (1/8)! = Gamma(9/8).

Original entry on oeis.org

9, 4, 1, 7, 4, 2, 6, 9, 9, 8, 4, 9, 7, 0, 1, 4, 8, 8, 0, 8, 7, 4, 0, 3, 7, 3, 0, 1, 5, 1, 8, 9, 1, 7, 0, 3, 0, 7, 6, 3, 0, 2, 4, 4, 8, 5, 1, 8, 6, 3, 4, 4, 9, 2, 6, 2, 2, 8, 9, 0, 9, 8, 7, 2, 2, 2, 0, 8, 2, 9, 5, 7, 1, 4, 9, 8, 6, 3, 3, 0, 1, 6, 0, 4, 1, 9, 1, 0, 7, 8, 3, 5, 1, 2, 9, 4, 6, 0, 6
Offset: 0

Views

Author

N. J. A. Sloane, Dec 29 2011

Keywords

Examples

			.94174269984970148808740373015189170307630244851863449262289...
		

Crossrefs

Programs

Formula

Equals A203142/8. - R. J. Mathar, Jan 15 2021
A203144 *this *A231863 *A011006 = A068467. - R. J. Mathar, Jan 15 2021
Equals Integral_{x=0..oo} exp(-x^8) dx. - Ilya Gutkovskiy, Sep 18 2021

A203126 Decimal expansion of (1/6)! = Gamma(7/6).

Original entry on oeis.org

9, 2, 7, 7, 1, 9, 3, 3, 3, 6, 3, 0, 0, 3, 9, 2, 0, 0, 7, 0, 8, 3, 4, 9, 4, 8, 2, 5, 3, 4, 6, 2, 1, 0, 1, 8, 5, 6, 6, 4, 6, 6, 5, 1, 9, 1, 4, 5, 4, 7, 5, 5, 7, 6, 9, 3, 6, 1, 2, 4, 1, 0, 4, 3, 8, 7, 1, 5, 1, 2, 5, 0, 4, 6, 9, 6, 3, 3, 7, 1, 7, 5, 8, 3, 8, 9, 8, 2, 7, 5, 6, 0, 3, 5, 0, 3, 6, 2, 5
Offset: 0

Views

Author

N. J. A. Sloane, Dec 29 2011

Keywords

Examples

			.92771933363003920070834948253462101856646651914547557693612...
		

Crossrefs

Programs

Formula

Equals A175379/6. - R. J. Mathar, Jan 15 2021
A073006 * this * A231863 * A329219 = A202623. - R. J. Mathar, Jan 15 2021
Equals Integral_{x=0..oo} exp(-x^6) dx. - Ilya Gutkovskiy, Sep 18 2021

A204068 Decimal expansion of the Fresnel Integral Integral_{x>=0} sin(x^3) dx.

Original entry on oeis.org

4, 4, 6, 4, 8, 9, 7, 5, 5, 7, 8, 4, 6, 2, 4, 6, 0, 5, 6, 0, 9, 2, 8, 2, 1, 5, 6, 8, 2, 9, 1, 1, 2, 9, 4, 0, 6, 8, 8, 1, 1, 4, 8, 9, 6, 3, 2, 6, 2, 1, 6, 8, 5, 0, 1, 5, 8, 4, 0, 4, 7, 2, 1, 2, 6, 5, 0, 6, 9, 6, 0, 1, 6, 9, 4, 6, 2, 3, 9, 6, 9, 9, 2, 3, 4, 9, 7, 1, 4, 8, 1, 7, 3, 5, 3, 1, 4, 6, 4, 9, 0, 3, 1, 9, 3
Offset: 0

Views

Author

R. J. Mathar, Jan 10 2013

Keywords

Comments

Imaginary part associated with A204067.

Examples

			0.446489755784624605609282...
		

Crossrefs

Programs

  • Maple
    evalf(Pi/GAMMA(2/3)/3^(3/2) ) ;
  • Mathematica
    RealDigits[Gamma[1/3]/6, 10, 120][[1]] (* Amiram Eldar, May 26 2023 *)

Formula

Equals Pi/(Gamma(2/3)* 3^(3/2)) = A073010 / A073006.
(this value)^2 + A204067^2 = A202623^2.
Equals Gamma(1/3)/6 = A073005 / 6. - Amiram Eldar, May 26 2023

A376859 Decimal expansion of Product_{k=1..4} Gamma(k/3).

Original entry on oeis.org

3, 2, 3, 9, 3, 7, 1, 3, 4, 0, 7, 1, 6, 9, 7, 3, 2, 0, 6, 1, 8, 0, 0, 6, 6, 0, 1, 1, 6, 3, 0, 7, 9, 4, 8, 9, 8, 0, 1, 2, 1, 3, 7, 8, 2, 4, 5, 5, 4, 5, 1, 2, 5, 1, 0, 9, 1, 4, 4, 2, 6, 6, 9, 4, 0, 0, 1, 7, 7, 7, 1, 2, 5, 6, 9, 6, 7, 7, 0, 0, 6, 5, 8, 8, 3, 9, 0, 1, 1, 8
Offset: 1

Views

Author

Paolo Xausa, Oct 09 2024

Keywords

Examples

			3.23937134071697320618006601163079489801213782...
		

Crossrefs

Other identities for Product_{k=1..m} Gamma(k/3): A073005 (m = 1), A186706 (m = 2 and m = 3), A376911 (m = 5 and m = 6), A376912 (m = 7), A376913 (m = 8).

Programs

  • Mathematica
    First[RealDigits[2*Pi*Gamma[4/3]/Sqrt[3], 10, 100]]

Formula

Equals 2*Pi*Gamma(1/3)/(3*sqrt(3)) = 2*Pi*Gamma(4/3)/sqrt(3) = A186706*A202623 (cf. eq. 86 in Weisstein link).

A256923 Decimal expansion of Sum_{k>=1} (zeta(2k)/k)*(1/3)^(2k).

Original entry on oeis.org

1, 8, 9, 9, 5, 8, 6, 3, 3, 4, 0, 7, 1, 8, 0, 9, 4, 6, 4, 6, 7, 7, 9, 1, 6, 1, 7, 4, 2, 7, 4, 4, 6, 7, 2, 2, 7, 5, 1, 5, 5, 9, 1, 1, 0, 5, 4, 1, 4, 4, 2, 6, 4, 8, 0, 3, 2, 2, 6, 1, 5, 8, 0, 5, 0, 9, 2, 8, 9, 9, 5, 2, 0, 2, 6, 6, 0, 7, 3, 4, 5, 0, 7, 9, 0, 6, 2, 9, 6, 5, 0, 5, 1, 3, 1, 0, 2, 6, 2, 0, 6, 2, 0, 5, 6
Offset: 0

Views

Author

Jean-François Alcover, Apr 13 2015

Keywords

Examples

			0.189958633407180946467791617427446722751559110541442648...
		

References

  • H. M. Srivastava and Junesang Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Insights (2011) p. 272.

Crossrefs

Programs

  • Mathematica
    RealDigits[Log[2*Pi/(3*Sqrt[3])], 10, 105] // First

Formula

Equals log(Gamma(2/3)*Gamma(4/3)).
Equals log(2*Pi/(3*sqrt(3))).
Equals log(A248897).
Equals -Sum_{k>=1} log(1 - 1/(3*k)^2). - Amiram Eldar, Aug 12 2020

A335828 Numerators of coefficients in a power series expansion of the distance between two bodies falling freely towards each other along a straight line under the influence of their mutual gravitational attraction.

Original entry on oeis.org

1, 1, 11, 73, 887, 136883, 7680089, 26838347, 14893630313, 1908777537383, 2422889987331397, 233104477447558811, 2430782624763507659, 14420190617640617313953, 4515429325405165295004389, 812454316441781379614873497, 166481868581561511154267399013
Offset: 1

Views

Author

Amiram Eldar, Jun 25 2020

Keywords

Comments

Consider two point objects with masses m_1 and m_2 that are starting to fall towards each other from rest at time t = 0 and initial distance r_0. Foong (2008) gave the solution for the distance as a function of time, r(t) = r_0 * f(t/t_0), where t_0 = sqrt(r_0^3/(G*(m1+m2))), G is the gravitational constant (A070058), and f(x) = 1 - Sum_{n>=1} c(n) * x^(2*n) is a dimensionless function. c(n) are the rational coefficients whose numerators are given in this sequence. The denominators are given in A335829. The collision occurs when f(x) = 0, at x = Pi/(2*sqrt(2)) (A093954), which corresponds to the time t = (Pi/(2*sqrt(2))) * t_0.
A similar expansion was given by Ernst Meissel in his study of the three-body problem in 1882. In Meissel's expansion the coefficients are c(n)/2^n.

Examples

			The series begins with f(x) = 1 - (1/2)*x^2 - (1/12)*x^4 - (11/360)*x^6 - ...
		

References

  • Sudhir Ranjan Jain, Mechanics, Waves and Thermodynamics: An Example-based Approach, Cambridge University Press, 2016. See page 97.
  • Ernst Meissel, Über Reihen, denen man bei der numerischen Lösung des Problems der Dreikörperproblems begegnet, wenn die Anfangsgeschwindigkeiten Null sind, in: Jahresbericht über die Realschule in Kiel: Während des Schuljahres 1881/82, A. F. Jensen, Kiel, 1882, pp. 1-11.

Crossrefs

Cf. A070058, A093954, A202623, A335829 (denominators).

Programs

  • Mathematica
    c[1] = 1/2; c[n_] := c[n] = (2*Sum[(n - k)*(2*n - 2*k - 1)*c[n - k]*c[k], {k, 1, n - 1}] - Sum[(n - m)*(2*n - 2*m - 1)*c[n - m]*c[m - k]*c[k], {m, 2, n - 1}, {k, 1, m - 1}])/(n*(2*n - 1)); Numerator @ Array[c, 17]
    (* or *)
    Quiet[-Numerator @ CoefficientList[AsymptoticDSolveValue[{y[x]*y'[x]^2 == 2*(1-y[x]), y[0] == 1}, y[x], {x, 0, 25}], x][[3;;-1;;2]]] (* requires Mathematica 11.3+ *)

Formula

a(n) = numerator(c(n)), c(1) = 1/2, c(n) = (2 * Sum_{k=1..n-1} (n-k)*(2*n-2*k-1)*c(n-k)*c(k) - Sum_{m=2..n-1} (n-m)*(2*n-2*m-1)*c(n-m) * Sum_{k=1..m-1} c(m-k)*c(k))/(n*(2*n - 1)).
c(n) ~ c_0 * n^(-5/3) * (Pi/(2*sqrt(2)))^(-2*n), where c_0 = (3*Pi)^(2/3) / (18*Gamma(4/3)) = 0.277587...

A371856 Decimal expansion of Integral_{x=0..oo} exp(-x^5) dx.

Original entry on oeis.org

9, 1, 8, 1, 6, 8, 7, 4, 2, 3, 9, 9, 7, 6, 0, 6, 1, 0, 6, 4, 0, 9, 5, 1, 6, 5, 5, 1, 8, 5, 8, 3, 0, 4, 0, 0, 6, 8, 6, 8, 2, 1, 9, 9, 9, 6, 5, 8, 6, 8, 0, 6, 0, 3, 5, 5, 7, 7, 7, 0, 6, 2, 7, 2, 4, 6, 0, 0, 7, 8, 5, 4, 6, 2, 1, 2, 8, 8, 9, 9, 9, 7, 9, 4, 8, 0, 7, 8, 8, 1, 6, 5, 7, 5, 5, 7, 0, 1, 4, 9, 1, 3, 8, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 09 2024

Keywords

Examples

			0.91816874239976061064095165518583040068682...
		

Crossrefs

Decimal expansion of Integral_{x=0..oo} exp(-x^k) dx: A019704 (k=2), A202623 (k=3), A068467 (k=4), this sequence (k=5), A203126 (k=6), A371857 (k=7), A203125 (k=8).
Cf. A175380.

Programs

  • Mathematica
    RealDigits[Gamma[6/5], 10, 104][[1]]

Formula

Equals Gamma(6/5).
Equals A175380 / 5.

A371857 Decimal expansion of Integral_{x=0..oo} exp(-x^7) dx.

Original entry on oeis.org

9, 3, 5, 4, 3, 7, 5, 6, 2, 8, 9, 2, 5, 4, 6, 3, 4, 8, 2, 4, 4, 8, 7, 0, 4, 7, 8, 4, 8, 9, 8, 5, 6, 6, 0, 8, 9, 4, 5, 8, 7, 6, 4, 5, 5, 3, 4, 0, 5, 9, 0, 7, 3, 5, 5, 6, 2, 8, 8, 1, 2, 5, 9, 8, 7, 8, 3, 6, 8, 0, 2, 9, 2, 4, 8, 3, 1, 9, 8, 7, 6, 8, 2, 7, 2, 2, 3, 1, 0, 8, 8, 5, 6, 3, 3, 1, 3, 2, 9, 9, 9, 7, 8, 1, 8, 6
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 09 2024

Keywords

Examples

			0.9354375628925463482448704784898566089...
		

Crossrefs

Decimal expansion of Integral_{x=0..oo} exp(-x^k) dx: A019704 (k=2), A202623 (k=3), A068467 (k=4), A371856 (k=5), A203126 (k=6), this sequence (k=7), A203125 (k=8).
Cf. A220086.

Programs

  • Mathematica
    RealDigits[Gamma[8/7], 10, 106][[1]]

Formula

Equals Gamma(8/7).
Equals A220086 / 7.
Showing 1-10 of 11 results. Next