cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A376911 Decimal expansion of Product_{k=1..5} Gamma(k/3).

Original entry on oeis.org

2, 9, 2, 4, 3, 2, 7, 2, 2, 9, 9, 5, 2, 4, 0, 2, 5, 5, 3, 7, 2, 8, 7, 3, 8, 0, 7, 4, 0, 3, 7, 3, 7, 8, 1, 1, 4, 1, 6, 7, 0, 2, 2, 0, 4, 6, 5, 8, 9, 8, 6, 3, 8, 8, 9, 3, 0, 7, 6, 5, 9, 0, 7, 4, 4, 3, 5, 5, 6, 8, 8, 3, 6, 2, 7, 2, 3, 5, 7, 1, 0, 9, 0, 3, 7, 5, 6, 2, 4, 8
Offset: 1

Views

Author

Paolo Xausa, Oct 11 2024

Keywords

Examples

			2.9243272299524025537287380740373781141670220...
		

Crossrefs

Other identities for Product_{k=1..m} Gamma(k/3): A073005 (m = 1), A186706 (m = 2 and m = 3), A376859 (m = 4), A376912 (m = 7), A376913 (m = 8).

Programs

  • Mathematica
    First[RealDigits[8/27*Pi^2, 10, 100]]

Formula

Equals Product_{k=1..6} Gamma(k/3) = (8/27)*Pi^2 = (8/27)*A002388 (cf. eqs. 87 and 88 in Weisstein link).
Equals 2*A214549. - Hugo Pfoertner, Oct 11 2024

A376912 Decimal expansion of Product_{k=1..7} Gamma(k/3).

Original entry on oeis.org

3, 4, 8, 1, 8, 1, 9, 0, 6, 8, 6, 2, 8, 7, 3, 5, 9, 3, 9, 5, 9, 8, 9, 5, 2, 0, 6, 2, 9, 2, 2, 7, 4, 2, 2, 8, 8, 0, 0, 7, 3, 3, 6, 8, 0, 9, 8, 1, 9, 7, 4, 7, 2, 6, 8, 7, 7, 5, 6, 3, 6, 2, 8, 9, 2, 7, 9, 4, 8, 9, 3, 0, 6, 8, 3, 9, 9, 4, 6, 5, 2, 6, 8, 2, 8, 0, 4, 8, 0, 3
Offset: 1

Views

Author

Paolo Xausa, Oct 11 2024

Keywords

Examples

			3.4818190686287359395989520629227422880073368098...
		

Crossrefs

Cf. A002388.
Other identities for Product_{k=1..m} Gamma(k/3): A073005 (m = 1), A186706 (m = 2 and m = 3), A376859 (m = 4), A376911 (m = 5 and m = 6), A376913 (m = 8).

Programs

  • Mathematica
    First[RealDigits[32/243*Pi^2*Gamma[1/3], 10, 100]]

Formula

Equals (32/243)*Pi^2*Gamma(1/3) = (32/243)*A002388*A073005 (cf. eq. 89 in Weisstein link).

A376913 Decimal expansion of Product_{k=1..8} Gamma(k/3).

Original entry on oeis.org

5, 2, 3, 8, 6, 5, 9, 6, 2, 5, 1, 8, 5, 6, 5, 8, 4, 1, 0, 3, 2, 9, 2, 3, 2, 0, 9, 9, 9, 7, 6, 3, 6, 6, 2, 6, 8, 1, 3, 5, 9, 7, 7, 3, 9, 9, 2, 1, 5, 7, 5, 6, 6, 5, 0, 5, 6, 3, 4, 8, 0, 9, 7, 6, 2, 9, 1, 0, 5, 5, 8, 0, 4, 6, 4, 1, 9, 1, 5, 1, 8, 2, 3, 1, 9, 1, 6, 8, 2, 1
Offset: 1

Views

Author

Paolo Xausa, Oct 11 2024

Keywords

Examples

			5.2386596251856584103292320999763662681359773992...
		

Crossrefs

Other identities for Product_{k=1..m} Gamma(k/3): A073005 (m = 1), A186706 (m = 2 and m = 3), A376859 (m = 4), A376911 (m = 5 and m = 6), A376912 (m = 7).

Programs

  • Mathematica
    First[RealDigits[640*Pi^3/(2187*Sqrt[3]), 10, 100]]

Formula

Equals 640*Pi^3/(2187*sqrt(3)) = 640*A091925/(3^7*A002194) (cf. eq. 90 in Weisstein link).
Showing 1-3 of 3 results.