cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A211996 Number of ordered pairs (i,j) such that i*j=n and i+j is a square.

Original entry on oeis.org

0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 2, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 4, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 4, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0
Offset: 1

Views

Author

Michel Marcus, Oct 25 2012

Keywords

Comments

a(n) = 1 for n > 0 in A141046.
a(8820) = 8 and it is the only term in the first 10000 terms that is greater than 6. There are 977 terms in the first 10000 terms that are greater than zero. - Harvey P. Dale, Nov 08 2012

Examples

			For n=3, the pairs (a,b) such that a*b=3 are (1,3) and (3,1). Both pairs add up to a square, so a(3) = 2.
		

Crossrefs

Programs

Formula

Sum_{k=1..n} a(k) = c * n^(3/4) + O(sqrt(n)), where c = A377731 (De Koninck et al., 2024). - Amiram Eldar, Nov 05 2024

A377732 Numbers k such that max{d|k, d <= sqrt(k)} + min{d|k, d >= sqrt(k)} is a square.

Original entry on oeis.org

3, 4, 14, 18, 20, 39, 46, 55, 60, 63, 64, 94, 114, 136, 150, 154, 155, 156, 158, 183, 203, 243, 258, 275, 291, 295, 299, 308, 315, 320, 323, 324, 328, 334, 444, 446, 490, 544, 558, 570, 579, 580, 583, 584, 588, 594, 598, 600, 695, 710, 718, 799, 855, 878, 903, 904, 938, 943, 955, 959, 975, 978, 979, 988, 999
Offset: 1

Views

Author

Amiram Eldar, Nov 05 2024

Keywords

Comments

Numbers k such that A063655(k) = A033676(k) + A033677(k) is a square.
The square terms of this sequence are the positive numbers of the form A141046(m) = 4*m^4.

Crossrefs

Subsequences: A141046 \ {0}, A377733, A377736.

Programs

  • Mathematica
    q[k_] := If[IntegerQ[Sqrt[k]], IntegerQ[Sqrt[2*Sqrt[k]]], Module[{d = Divisors[k], nh}, nh = Length[d]/2; IntegerQ[Sqrt[d[[nh]] + d[[nh + 1]]]]]]; Select[Range[1000], q]
  • PARI
    is(k) = if(issquare(k), issquare(2 * sqrtint(k)), my(d = divisors(k), nh = #d/2); issquare(d[nh] + d[nh + 1]));
    
  • Python
    from itertools import count, islice
    from sympy import divisors
    from sympy.ntheory.primetest import is_square
    def A377732_gen(startvalue=1): # generator of terms >= startvalue
        for k in count(max(startvalue,1)):
            d = (a:=divisors(k))[len(a)-1>>1]
            if is_square(d+k//d):
                yield k
    A377732_list = list(islice(A377732_gen(),30)) # Chai Wah Wu, Nov 06 2024

Formula

c * x^(3/4) / log(x) < R(x) < 2 * c * x^(3/4) / log(x) for sufficiently large x, where R(x) is the number of terms that do not exceed x, and c = A377731 (De Koninck et al., 2024).

A384563 Decimal expansion of Beta(1/4,1/4).

Original entry on oeis.org

7, 4, 1, 6, 2, 9, 8, 7, 0, 9, 2, 0, 5, 4, 8, 7, 6, 7, 3, 7, 3, 5, 4, 0, 1, 3, 8, 8, 7, 8, 1, 0, 4, 0, 1, 8, 4, 8, 7, 0, 3, 9, 5, 2, 9, 4, 0, 8, 7, 0, 6, 7, 6, 2, 2, 3, 4, 3, 7, 1, 2, 1, 8, 0, 2, 2, 4, 0, 8, 7, 1, 0, 7, 3, 5, 2, 4, 7, 9, 9, 1, 3, 4, 2, 9, 0, 8, 7, 4, 4, 6, 6, 0, 1, 4, 8, 7, 5, 8, 9
Offset: 1

Views

Author

Stefano Spezia, Jun 03 2025

Keywords

Examples

			7.416298709205487673735401388781040184870395294...
		

Crossrefs

Similar constants Beta(1/k,1/k): A000796 (k=2), A197374 (k=3).

Programs

  • Mathematica
    RealDigits[Beta[1/4,1/4],10,100][[1]]

Formula

Equals Gamma(1/4)^2/sqrt(Pi) = A068466^2/A002161.
Equals 2*A175576 = 3*A377731. - Hugo Pfoertner, Jun 03 2025
Showing 1-3 of 3 results.