cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 82 results. Next

A019645 Decimal expansion of sqrt(Pi*e).

Original entry on oeis.org

2, 9, 2, 2, 2, 8, 2, 3, 6, 5, 3, 2, 2, 2, 7, 7, 8, 6, 4, 5, 4, 1, 6, 2, 3, 0, 7, 6, 1, 0, 7, 6, 8, 2, 3, 1, 5, 3, 9, 7, 9, 0, 7, 5, 5, 2, 6, 4, 6, 5, 6, 6, 8, 5, 9, 0, 1, 7, 7, 4, 0, 0, 1, 1, 4, 7, 1, 9, 5, 6, 1, 7, 2, 3, 6, 2, 9, 5, 6, 8, 8, 4, 4, 4, 3, 9, 5, 6, 5, 6, 7, 7, 6, 7, 0, 5, 8, 9, 2
Offset: 1

Views

Author

Keywords

Examples

			2.9222823653222778645416230761076823153979...
		

Crossrefs

Cf. A019609.

Programs

  • Magma
    C := ComplexField(); [Sqrt(Pi(C)*Exp(1))]; // G. C. Greubel, Nov 17 2017
  • Mathematica
    RealDigits[Sqrt[Pi E],10,120][[1]] (* Harvey P. Dale, Jun 14 2014 *)
  • PARI
    sqrt(Pi*exp(1)) \\ G. C. Greubel, Nov 17 2017
    

Formula

Equals A002161*A019774. - R. J. Mathar, Apr 11 2024

A092731 Decimal expansion of Pi^5.

Original entry on oeis.org

3, 0, 6, 0, 1, 9, 6, 8, 4, 7, 8, 5, 2, 8, 1, 4, 5, 3, 2, 6, 2, 7, 4, 1, 3, 1, 0, 0, 4, 3, 4, 3, 5, 6, 0, 6, 4, 8, 0, 3, 0, 0, 7, 0, 6, 6, 2, 8, 0, 7, 4, 9, 9, 0, 5, 5, 3, 4, 9, 2, 4, 4, 3, 6, 8, 6, 2, 3, 4, 9, 9, 2, 1, 3, 3, 6, 1, 4, 0, 2, 4, 4, 8, 5, 7, 8, 3, 5, 0, 0, 4, 7, 3, 5, 0, 5, 1, 1, 8, 9, 0, 4, 0, 3, 7
Offset: 3

Author

Mohammad K. Azarian, Apr 12 2004

Keywords

Examples

			306.0196847852814532
		

Programs

Formula

From Peter Bala, Oct 31 2019: (Start)
Pi^5 = (4!/(2*305)) * Sum_{n >= 0} (-1)^n*( 1/(n + 1/6)^5 + 1/(n + 5/6)^5 ), where 305 = ((3^5 + 1)/4)*A000364(2) = A002437(2).
Pi^5 = (4!/(2*3905)) * Sum_{n >= 0} (-1)^n*( 1/(n + 1/10)^5 - 1/(n + 3/10)^5 - 1/(n + 7/10)^5 + 1/(n + 9/10)^5 ), where 3905 = ((5^5 - 1)/4)*A000364(2).
Cf. A019692, A091925 and A092735. (End)

A020759 Decimal expansion of (-1)*Gamma'(1/2)/Gamma(1/2) where Gamma(x) denotes the Gamma function.

Original entry on oeis.org

1, 9, 6, 3, 5, 1, 0, 0, 2, 6, 0, 2, 1, 4, 2, 3, 4, 7, 9, 4, 4, 0, 9, 7, 6, 3, 3, 2, 9, 9, 8, 7, 5, 5, 5, 6, 7, 1, 9, 3, 1, 5, 9, 6, 0, 4, 6, 6, 0, 4, 3, 4, 1, 0, 7, 0, 4, 7, 1, 2, 7, 2, 5, 3, 8, 7, 1, 6, 5, 4, 9, 7, 0, 7, 1, 7, 0, 5, 4, 1, 0, 2, 1, 4, 8, 6, 7, 3, 7, 1, 7, 2, 8, 4, 5, 8, 4, 1, 2, 4, 5, 9, 8, 6, 3
Offset: 1

Author

Benoit Cloitre, May 24 2003

Keywords

Comments

Decimal expansion of -psi(1/2). - Benoit Cloitre, Mar 07 2004

Examples

			1.96351002602142347944097633299875556719315960466...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), 6.3.3, p. 258. - Robert G. Wilson v, Jun 20 2011
  • S. J. Patterson, An introduction to the theory of the Riemann zeta function, Cambridge studies in advanced mathematics no. 14, p. 135.

Crossrefs

Programs

  • Magma
    R:=RealField(100); EulerGamma(R) + 2*Log(2); // G. C. Greubel, Aug 27 2018
  • Maple
    evalf(-Psi(0.5)) ; # R. J. Mathar, Sep 10 2013
  • Mathematica
    RealDigits[ EulerGamma + 2 Log[2], 10, 111][[1]] (* Robert G. Wilson v, Jun 20 2011 *)
  • PARI
    Euler+2*log(2)
    
  • PARI
    2-psi(-1/2) \\ Stanislav Sykora, Oct 03 2014
    

Formula

Gamma'(1/2)/Gamma(1/2) = -EulerGamma - 2*log(2) = -1.9635100260214234794... where EulerGamma is the Euler-Mascheroni constant (A001620).
Equals 2 - psi(-1/2) = 2-A248176. - Stanislav Sykora, Oct 03 2014
Equals A131265/A002161. - R. J. Mathar, Jun 02 2022
Equals lim_{n->oo} (Sum_{k=0..n} 1/(k+1/2) - log(n)). - Amiram Eldar, Mar 04 2023

A155968 Decimal expansion of (1/2)*log(Pi).

Original entry on oeis.org

5, 7, 2, 3, 6, 4, 9, 4, 2, 9, 2, 4, 7, 0, 0, 0, 8, 7, 0, 7, 1, 7, 1, 3, 6, 7, 5, 6, 7, 6, 5, 2, 9, 3, 5, 5, 8, 2, 3, 6, 4, 7, 4, 0, 6, 4, 5, 7, 6, 5, 5, 7, 8, 5, 7, 5, 6, 8, 1, 1, 5, 3, 5, 7, 3, 6, 0, 6, 8, 8, 8, 4, 9, 4, 2, 4, 1, 3, 0, 3, 9, 8, 9, 1, 8, 1, 1, 6, 3, 5, 1, 3, 7, 7, 4, 4, 8, 5, 3, 8, 5, 1, 0, 0, 4
Offset: 0

Author

R. J. Mathar, Jan 31 2009

Keywords

Comments

This sequence is also the decimal expansion of the logarithm of the Gamma-function at 1/2. - Iaroslav V. Blagouchine, Mar 20 2015

Examples

			0.572364942924700087071713675676529355823...
		

Crossrefs

Cf. A053510.

Programs

  • Maple
    evalf(log(Pi)/2);
  • Mathematica
    RealDigits[Log[Pi]/2,10,120][[1]] (* Harvey P. Dale, May 31 2015 *)
  • PARI
    log(gamma(1/2)) \\ or \\ log(Pi)/2 \\ G. C. Greubel, Jan 16 2017

Formula

Equals A053510/2 = log(A002161) = A131659/4.

A175379 Decimal expansion of Gamma(1/6).

Original entry on oeis.org

5, 5, 6, 6, 3, 1, 6, 0, 0, 1, 7, 8, 0, 2, 3, 5, 2, 0, 4, 2, 5, 0, 0, 9, 6, 8, 9, 5, 2, 0, 7, 7, 2, 6, 1, 1, 1, 3, 9, 8, 7, 9, 9, 1, 1, 4, 8, 7, 2, 8, 5, 3, 4, 6, 1, 6, 1, 6, 7, 4, 4, 6, 2, 6, 3, 2, 2, 9, 0, 7, 5, 0, 2, 8, 1, 7, 8, 0, 2, 3, 0, 5, 5, 0, 3, 3, 8, 9, 6, 5, 3, 6, 2, 1, 0, 2, 1, 7, 5, 4, 6, 5, 9, 8, 1
Offset: 1

Author

R. J. Mathar, Apr 24 2010

Keywords

Comments

A175379 * A073005 * A002161 * A073006 * A203145 = 4*sqrt(Pi^5/3), which is the case n=6 of Product_{i=1..n-1} Gamma(i/n) = sqrt((2*Pi)^(n-1)/n). - Bruno Berselli, Dec 18 2012
The transcendence of this constant is in the mathematical folklore; see Finch (who credits Nesterenko) and Gun-Murty-Rath. - Charles R Greathouse IV, Nov 11 2013

Examples

			Equals 5.56631600178023...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Gamma(1/6); // G. C. Greubel, Mar 10 2018
  • Maple
    evalf(GAMMA(1/6)) ;
  • Mathematica
    RealDigits[Gamma[1/6], 10, 110][[1]] (* Bruno Berselli, Dec 13 2012 *)
  • PARI
    gamma(1/6) \\ Charles R Greathouse IV, Nov 16 2013
    

Formula

Equals 2*Pi/A203145 = A002194 * A073005^2 / (A002161 * A002580) = A019692 / 1.12878703....

A092732 Decimal expansion of Pi^6.

Original entry on oeis.org

9, 6, 1, 3, 8, 9, 1, 9, 3, 5, 7, 5, 3, 0, 4, 4, 3, 7, 0, 3, 0, 2, 1, 9, 4, 4, 3, 6, 5, 2, 4, 1, 9, 8, 9, 8, 8, 6, 7, 2, 1, 7, 5, 2, 8, 0, 8, 1, 0, 4, 6, 6, 1, 5, 9, 4, 1, 0, 7, 6, 1, 8, 7, 4, 8, 4, 0, 9, 3, 9, 1, 2, 8, 4, 2, 3, 5, 0, 2, 1, 3, 4, 9, 9, 2, 2, 1, 4, 0, 9, 1, 5, 1, 9, 1, 5, 7, 3, 6, 1, 5, 1, 1, 1, 3
Offset: 3

Author

Mohammad K. Azarian, Apr 12 2004

Keywords

Examples

			961.389193575304437...
		

Crossrefs

Programs

Formula

Equals Sum_{k>=1} k*(k+1)*(k+2)*(k+3)*(k+4)*zeta(k+5)/2^(k+2). - Amiram Eldar, May 21 2021

A087016 Decimal expansion of G(3/2), where G is the Barnes G-function.

Original entry on oeis.org

1, 0, 6, 9, 2, 2, 2, 6, 4, 9, 2, 6, 6, 4, 1, 2, 9, 4, 9, 5, 4, 3, 0, 0, 8, 8, 7, 8, 6, 9, 7, 8, 9, 1, 6, 0, 4, 6, 5, 2, 7, 6, 1, 6, 3, 5, 6, 0, 6, 8, 3, 3, 1, 3, 6, 5, 9, 5, 5, 7, 7, 5, 6, 2, 9, 2, 1, 8, 0, 9, 3, 5, 5, 4, 3, 9, 1, 6, 7, 3, 9, 5, 0, 2, 6, 5, 3, 1, 2, 2, 2, 7, 1, 9, 2, 2, 5, 3, 8, 4, 3, 0
Offset: 1

Author

Eric W. Weisstein, Jul 30 2003

Keywords

Examples

			1.0692...
		

Crossrefs

Programs

  • Mathematica
    (2^(1/24)*E^(1/8)*Pi^(1/4))/Glaisher^(3/2)
    (* Or, since version 7.0, *) RealDigits[BarnesG[3/2], 10, 102] // First (* Jean-François Alcover, Jul 11 2014 *)
  • PARI
    2^(1/24)*Pi^(1/4)*exp(3/2*zeta'(-1)) \\ Charles R Greathouse IV, Dec 12 2013

Formula

Equals A087014 * A002161. - R. J. Mathar, Jul 24 2025

A203145 Decimal expansion of Gamma(5/6).

Original entry on oeis.org

1, 1, 2, 8, 7, 8, 7, 0, 2, 9, 9, 0, 8, 1, 2, 5, 9, 6, 1, 2, 6, 0, 9, 0, 1, 0, 9, 0, 2, 5, 8, 8, 4, 2, 0, 1, 3, 3, 2, 6, 7, 8, 7, 4, 4, 1, 6, 6, 4, 7, 5, 5, 4, 5, 1, 7, 5, 2, 0, 8, 3, 5, 1, 4, 3, 3, 3, 7, 7, 0, 5, 1, 0, 9, 8, 7, 5, 0, 3, 9, 8, 7, 0, 5, 5, 4, 0, 0, 9, 0, 4, 4, 3, 8, 4, 0, 9, 7, 5
Offset: 1

Author

N. J. A. Sloane, Dec 29 2011

Keywords

Examples

			1.1287870299081259612609010902588420133267874416647554517520...
		

Crossrefs

Programs

Formula

A073005 * this * A231863 * A010768 = A073006. - R. J. Mathar, Jan 15 2021
Equals 2*Pi/Gamma(1/6) = A019692 / A175379. - Amiram Eldar, Jul 04 2023
Equals 2^(4/3) * Pi^(3/2) / (sqrt(3) * Gamma(1/3)^2). - Vaclav Kotesovec, Jul 04 2023

A257955 Decimal expansion of Gamma(1/Pi).

Original entry on oeis.org

2, 8, 1, 1, 2, 9, 7, 5, 1, 4, 6, 7, 0, 8, 6, 1, 6, 4, 2, 1, 2, 2, 7, 9, 0, 8, 0, 3, 7, 1, 0, 4, 8, 1, 6, 9, 3, 5, 2, 8, 1, 6, 5, 5, 2, 2, 3, 2, 9, 1, 7, 6, 5, 6, 8, 2, 2, 8, 9, 6, 5, 9, 0, 5, 3, 9, 3, 8, 6, 1, 5, 4, 8, 8, 7, 0, 1, 9, 2, 0, 5, 6, 8, 5, 1, 8, 8, 4, 8, 7, 4, 2, 3, 1, 8, 9, 0, 9, 3, 6, 4, 2, 4
Offset: 1

Author

Keywords

Comments

The reference gives an interesting product representation in terms of rational multiple of 1/Pi for Gamma(1/Pi).

Examples

			2.8112975146708616421227908037104816935281655223291765...
		

Programs

  • Maple
    evalf(GAMMA(1/Pi), 117);
  • Mathematica
    RealDigits[Gamma[1/Pi], 10, 117][[1]]
  • PARI
    default(realprecision, 117); gamma(1/Pi)

A092735 Decimal expansion of Pi^7.

Original entry on oeis.org

3, 0, 2, 0, 2, 9, 3, 2, 2, 7, 7, 7, 6, 7, 9, 2, 0, 6, 7, 5, 1, 4, 2, 0, 6, 4, 9, 3, 0, 7, 2, 0, 4, 1, 8, 3, 1, 9, 1, 7, 4, 3, 2, 4, 7, 5, 2, 9, 5, 4, 0, 2, 2, 6, 2, 7, 5, 4, 2, 3, 4, 4, 9, 2, 3, 8, 3, 1, 3, 4, 6, 6, 7, 2, 9, 3, 6, 1, 1, 8, 8, 0, 9, 3, 8, 4, 5, 2, 6, 2, 3, 0, 9, 0, 0, 0, 9, 7, 3, 5, 5, 6, 8, 6, 3
Offset: 4

Author

Mohammad K. Azarian, Apr 12 2004

Keywords

Comments

Wentworth (1903) shows how to compute the tangent of 15 degrees (A019913) to five decimal places by the laborious process of adding up the first few terms of Pi/12 + Pi^3/5184 + 2Pi^5/3732480 + 17Pi^7/11287019520 + ... - Alonso del Arte, Mar 13 2015

Examples

			3020.293227776792067514206493...
		

References

  • George Albert Wentworth, New Plane and Spherical Trigonometry, Surveying, and Navigation. Boston: The Atheneum Press (1903): 240.

Programs

Formula

From Peter Bala, Oct 30 2019: (Start)
Pi^7 = (6!/(2*33367)) * Sum_{n >= 0} (-1)^n*( 1/(n + 1/6)^7 + 1/(n + 5/6)^7 ), where 33367 = ((3^7 + 1)/4)*A000364(3) = A002437(3).
Pi^7 = (6!/(2*1191391)) * Sum_{n >= 0} (-1)^n*( 1/(n + 1/10)^7 - 1/(n + 3/10)^7 - 1/(n + 7/10)^7 + 1/(n + 9/10)^7 ), where 1191391 = ((5^7 - 1)/4)*A000364(3). (End)
Showing 1-10 of 82 results. Next