cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A000796 Decimal expansion of Pi (or digits of Pi).

Original entry on oeis.org

3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 6, 4, 3, 3, 8, 3, 2, 7, 9, 5, 0, 2, 8, 8, 4, 1, 9, 7, 1, 6, 9, 3, 9, 9, 3, 7, 5, 1, 0, 5, 8, 2, 0, 9, 7, 4, 9, 4, 4, 5, 9, 2, 3, 0, 7, 8, 1, 6, 4, 0, 6, 2, 8, 6, 2, 0, 8, 9, 9, 8, 6, 2, 8, 0, 3, 4, 8, 2, 5, 3, 4, 2, 1, 1, 7, 0, 6, 7, 9, 8, 2, 1, 4
Offset: 1

Views

Author

Keywords

Comments

Sometimes called Archimedes's constant.
Ratio of a circle's circumference to its diameter.
Also area of a circle with radius 1.
Also surface area of a sphere with diameter 1.
A useful mnemonic for remembering the first few terms: How I want a drink, alcoholic of course, after the heavy lectures involving quantum mechanics ...
Also ratio of surface area of sphere to one of the faces of the circumscribed cube. Also ratio of volume of a sphere to one of the six inscribed pyramids in the circumscribed cube. - Omar E. Pol, Aug 09 2012
Also surface area of a quarter of a sphere of radius 1. - Omar E. Pol, Oct 03 2013
Also the area under the peak-shaped even function f(x)=1/cosh(x). Proof: for the upper half of the integral, write f(x) = (2*exp(-x))/(1+exp(-2x)) = 2*Sum_{k>=0} (-1)^k*exp(-(2k+1)*x) and integrate term by term from zero to infinity. The result is twice the Gregory series for Pi/4. - Stanislav Sykora, Oct 31 2013
A curiosity: a 144 X 144 magic square of 7th powers was recently constructed by Toshihiro Shirakawa. The magic sum = 3141592653589793238462643383279502884197169399375105, which is the concatenation of the first 52 digits of Pi. See the MultiMagic Squares link for details. - Christian Boyer, Dec 13 2013 [Comment revised by N. J. A. Sloane, Aug 27 2014]
x*Pi is also the surface area of a sphere whose diameter equals the square root of x. - Omar E. Pol, Dec 25 2013
Also diameter of a sphere whose surface area equals the volume of the circumscribed cube. - Omar E. Pol, Jan 13 2014
From Daniel Forgues, Mar 20 2015: (Start)
An interesting anecdote about the base-10 representation of Pi, with 3 (integer part) as first (index 1) digit:
358 0
359 3
360 6
361 0
362 0
And the circle is customarily subdivided into 360 degrees (although Pi radians yields half the circle)...
(End)
Sometimes referred to as Archimedes's constant, because the Greek mathematician computed lower and upper bounds of Pi by drawing regular polygons inside and outside a circle. In Germany it was called the Ludolphian number until the early 20th century after the Dutch mathematician Ludolph van Ceulen (1540-1610), who calculated up to 35 digits of Pi in the late 16th century. - Martin Renner, Sep 07 2016
As of the beginning of 2019 more than 22 trillion decimal digits of Pi are known. See the Wikipedia article "Chronology of computation of Pi". - Harvey P. Dale, Jan 23 2019
On March 14, 2019, Emma Haruka Iwao announced the calculation of 31.4 trillion digits of Pi using Google Cloud's infrastructure. - David Radcliffe, Apr 10 2019
Also volume of three quarters of a sphere of radius 1. - Omar E. Pol, Aug 16 2019
On August 5, 2021, researchers from the University of Applied Sciences of the Grisons in Switzerland announced they had calculated 62.8 trillion digits. Guinness World Records has not verified this yet. - Alonso del Arte, Aug 23 2021
The Hermite-Lindemann (1882) theorem states, that if z is a nonzero algebraic number, then e^z is a transcendent number. The transcendence of Pi then results from Euler's relation: e^(i*Pi) = -1. - Peter Luschny, Jul 21 2023
The 10000 words of the book "Not A Wake" by Michael Keith, written in Pilish, match in length the first 10000 digits of Pi. - Paolo Xausa, Aug 07 2025

Examples

			3.1415926535897932384626433832795028841971693993751058209749445923078164062\
862089986280348253421170679821480865132823066470938446095505822317253594081\
284811174502841027019385211055596446229489549303819...
		

References

  • Mohammad K. Azarian, A Summary of Mathematical Works of Ghiyath ud-din Jamshid Kashani, Journal of Recreational Mathematics, Vol. 29(1), pp. 32-42, 1998.
  • J. Arndt & C. Haenel, Pi Unleashed, Springer NY 2001.
  • P. Beckmann, A History of Pi, Golem Press, Boulder, CO, 1977.
  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 396.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 24, 237-239.
  • J.-P. Delahaye, Le fascinant nombre pi, Pour la Science, Paris 1997.
  • P. Eyard and J.-P. Lafon, The Number Pi, Amer. Math. Soc., 2004.
  • S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, Section 1.4.
  • Le Petit Archimede, Special Issue On Pi, Supplement to No. 64-5, May 1980 ADCS Amiens.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 31.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 1, equations 1:7:1, 1:7:2 at pages 12-13.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See pp. 48-55.

Crossrefs

Cf. A001203 (continued fraction).
Pi in base b: A004601 (b=2), A004602 (b=3), A004603 (b=4), A004604 (b=5), A004605 (b=6), A004606 (b=7), A006941 (b=8), A004608 (b=9), this sequence (b=10), A068436 (b=11), A068437 (b=12), A068438 (b=13), A068439 (b=14), A068440 (b=15), A062964 (b=16), A224750 (b=26), A224751 (b=27), A060707 (b=60). - Jason Kimberley, Dec 06 2012
Decimal expansions of expressions involving Pi: A002388 (Pi^2), A003881 (Pi/4), A013661 (Pi^2/6), A019692 (2*Pi=tau), A019727 (sqrt(2*Pi)), A059956 (6/Pi^2), A060294 (2/Pi), A091925 (Pi^3), A092425 (Pi^4), A092731 (Pi^5), A092732 (Pi^6), A092735 (Pi^7), A092736 (Pi^8), A163973 (Pi/log(2)).
Cf. A001901 (Pi/2; Wallis), A002736 (Pi^2/18; Euler), A007514 (Pi), A048581 (Pi; BBP), A054387 (Pi; Newton), A092798 (Pi/2), A096954 (Pi/4; Machin), A097486 (Pi), A122214 (Pi/2), A133766 (Pi/4 - 1/2), A133767 (5/6 - Pi/4), A166107 (Pi; MGL).

Programs

  • Haskell
    -- see link: Literate Programs
    import Data.Char (digitToInt)
    a000796 n = a000796_list (n + 1) !! (n + 1)
    a000796_list len = map digitToInt $ show $ machin' `div` (10 ^ 10) where
       machin' = 4 * (4 * arccot 5 unity - arccot 239 unity)
       unity = 10 ^ (len + 10)
       arccot x unity = arccot' x unity 0 (unity `div` x) 1 1 where
         arccot' x unity summa xpow n sign
          | term == 0 = summa
          | otherwise = arccot'
            x unity (summa + sign * term) (xpow `div` x ^ 2) (n + 2) (- sign)
          where term = xpow `div` n
    -- Reinhard Zumkeller, Nov 24 2012
    
  • Haskell
    -- See Niemeijer link and also Gibbons link.
    a000796 n = a000796_list !! (n-1) :: Int
    a000796_list = map fromInteger $ piStream (1, 0, 1)
       [(n, a*d, d) | (n, d, a) <- map (\k -> (k, 2 * k + 1, 2)) [1..]] where
       piStream z xs'@(x:xs)
         | lb /= approx z 4 = piStream (mult z x) xs
         | otherwise = lb : piStream (mult (10, -10 * lb, 1) z) xs'
         where lb = approx z 3
               approx (a, b, c) n = div (a * n + b) c
               mult (a, b, c) (d, e, f) = (a * d, a * e + b * f, c * f)
    -- Reinhard Zumkeller, Jul 14 2013, Jun 12 2013
    
  • Macsyma
    py(x) := if equal(6,6+x^2) then 2*x else (py(x:x/3),3*%%-4*(%%-x)^3); py(3.); py(dfloat(%)); block([bfprecision:35], py(bfloat(%))) /* Bill Gosper, Sep 09 2002 */
    
  • Magma
    pi:=Pi(RealField(110)); Reverse(Intseq(Floor(10^105*pi))); // Bruno Berselli, Mar 12 2013
    
  • Maple
    Digits := 110: Pi*10^104:
    ListTools:-Reverse(convert(floor(%), base, 10)); # Peter Luschny, Oct 29 2019
  • Mathematica
    RealDigits[ N[ Pi, 105]] [[1]]
    Table[ResourceFunction["NthDigit"][Pi, n], {n, 1, 102}] (* Joan Ludevid, Jun 22 2022; easy to compute a(10000000)=7 with this function; requires Mathematica 12.0+ *)
  • PARI
    { default(realprecision, 20080); x=Pi; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b000796.txt", n, " ", d)); } \\ Harry J. Smith, Apr 15 2009
    
  • PARI
    A796=[]; A000796(n)={if(n>#A796, localprec(n*6\5+29); A796=digits(Pi\.1^(precision(Pi)-3))); A796[n]} \\ NOTE: as the other programs, this returns the n-th term of the sequence, with n = 1, 2, 3, ... and not n = 1, 0, -1, -2, .... - M. F. Hasler, Jun 21 2022
    
  • PARI
    first(n)= default(realprecision, n+10); digits(floor(Pi*10^(n-1))) \\ David A. Corneth, Jun 21 2022
    
  • PARI
    lista(nn, p=20)= {my(u=10^(nn+p+1), f(x, u)=my(n=1, q=u\x, r=q, s=1, t); while(t=(q\=(x*x))\(n+=2), r+=(s=-s)*t); r*4); digits((4*f(5, u)-f(239, u))\10^(p+2)); } \\ Machin-like, with p > the maximal number of consecutive 9-digits to be expected (A048940) - Ruud H.G. van Tol, Dec 26 2024
    
  • Python
    from sympy import pi, N; print(N(pi, 1000)) # David Radcliffe, Apr 10 2019
    
  • Python
    from mpmath import mp
    def A000796(n):
        if n >= len(A000796.str): mp.dps = n*6//5+50; A000796.str = str(mp.pi-5/mp.mpf(10)**mp.dps)
        return int(A000796.str[n if n>1 else 0])
    A000796.str = '' # M. F. Hasler, Jun 21 2022
    
  • SageMath
    m=125
    x=numerical_approx(pi, digits=m+5)
    a=[ZZ(i) for i in x.str(skip_zeroes=True) if i.isdigit()]
    a[:m] # G. C. Greubel, Jul 18 2023

Formula

Pi = 4*Sum_{k>=0} (-1)^k/(2k+1) [Madhava-Gregory-Leibniz, 1450-1671]. - N. J. A. Sloane, Feb 27 2013
From Johannes W. Meijer, Mar 10 2013: (Start)
2/Pi = (sqrt(2)/2) * (sqrt(2 + sqrt(2))/2) * (sqrt(2 + sqrt(2 + sqrt(2)))/2) * ... [Viete, 1593]
2/Pi = Product_{k>=1} (4*k^2-1)/(4*k^2). [Wallis, 1655]
Pi = 3*sqrt(3)/4 + 24*(1/12 - Sum_{n>=2} (2*n-2)!/((n-1)!^2*(2*n-3)*(2*n+1)*2^(4*n-2))). [Newton, 1666]
Pi/4 = 4*arctan(1/5) - arctan(1/239). [Machin, 1706]
Pi^2/6 = 3*Sum_{n>=1} 1/(n^2*binomial(2*n,n)). [Euler, 1748]
1/Pi = (2*sqrt(2)/9801) * Sum_{n>=0} (4*n)!*(1103+26390*n)/((n!)^4*396^(4*n)). [Ramanujan, 1914]
1/Pi = 12*Sum_{n>=0} (-1)^n*(6*n)!*(13591409 + 545140134*n)/((3*n)!*(n!)^3*(640320^3)^(n+1/2)). [David and Gregory Chudnovsky, 1989]
Pi = Sum_{n>=0} (1/16^n) * (4/(8*n+1) - 2/(8*n+4) - 1/(8*n+5) - 1/(8*n+6)). [Bailey-Borwein-Plouffe, 1989] (End)
Pi = 4 * Sum_{k>=0} 1/(4*k+1) - 1/(4*k+3). - Alexander R. Povolotsky, Dec 25 2008
Pi = 4*sqrt(-1*(Sum_{n>=0} (i^(2*n+1))/(2*n+1))^2). - Alexander R. Povolotsky, Jan 25 2009
Pi = Integral_{x=-oo..oo} dx/(1+x^2). - Mats Granvik and Gary W. Adamson, Sep 23 2012
Pi - 2 = 1/1 + 1/3 - 1/6 - 1/10 + 1/15 + 1/21 - 1/28 - 1/36 + 1/45 + ... [Jonas Castillo Toloza, 2007], that is, Pi - 2 = Sum_{n>=1} (1/((-1)^floor((n-1)/2)*(n^2+n)/2)). - José de Jesús Camacho Medina, Jan 20 2014
Pi = 3 * Product_{t=img(r),r=(1/2+i*t) root of zeta function} (9+4*t^2)/(1+4*t^2) <=> RH is true. - Dimitris Valianatos, May 05 2016
From Ilya Gutkovskiy, Aug 07 2016: (Start)
Pi = Sum_{k>=1} (3^k - 1)*zeta(k+1)/4^k.
Pi = 2*Product_{k>=2} sec(Pi/2^k).
Pi = 2*Integral_{x>=0} sin(x)/x dx. (End)
Pi = 2^{k + 1}*arctan(sqrt(2 - a_{k - 1})/a_k) at k >= 2, where a_k = sqrt(2 + a_{k - 1}) and a_1 = sqrt(2). - Sanjar Abrarov, Feb 07 2017
Pi = Integral_{x = 0..2} sqrt(x/(2 - x)) dx. - Arkadiusz Wesolowski, Nov 20 2017
Pi = lim_{n->oo} 2/n * Sum_{m=1,n} ( sqrt( (n+1)^2 - m^2 ) - sqrt( n^2 - m^2 ) ). - Dimitri Papadopoulos, May 31 2019
From Peter Bala, Oct 29 2019: (Start)
Pi = Sum_{n >= 0} 2^(n+1)/( binomial(2*n,n)*(2*n + 1) ) - Euler.
More generally, Pi = (4^x)*x!/(2*x)! * Sum_{n >= 0} 2^(n+1)*(n+x)!*(n+2*x)!/(2*n+2*x+1)! = 2*4^x*x!^2/(2*x+1)! * hypergeom([2*x+1,1], [x+3/2], 1/2), valid for complex x not in {-1,-3/2,-2,-5/2,...}. Here, x! is shorthand notation for the function Gamma(x+1). This identity may be proved using Gauss's second summation theorem.
Setting x = 3/4 and x = -1/4 (resp. x = 1/4 and x = -3/4) in the above identity leads to series representations for the constant A085565 (resp. A076390). (End)
Pi = Im(log(-i^i)) = log(i^i)*(-2). - Peter Luschny, Oct 29 2019
From Amiram Eldar, Aug 15 2020: (Start)
Equals 2 + Integral_{x=0..1} arccos(x)^2 dx.
Equals Integral_{x=0..oo} log(1 + 1/x^2) dx.
Equals Integral_{x=0..oo} log(1 + x^2)/x^2 dx.
Equals Integral_{x=-oo..oo} exp(x/2)/(exp(x) + 1) dx. (End)
Equals 4*(1/2)!^2 = 4*Gamma(3/2)^2. - Gary W. Adamson, Aug 23 2021
From Peter Bala, Dec 08 2021: (Start)
Pi = 32*Sum_{n >= 1} (-1)^n*n^2/((4*n^2 - 1)*(4*n^2 - 9))= 384*Sum_{n >= 1} (-1)^(n+1)*n^2/((4*n^2 - 1)*(4*n^2 - 9)*(4*n^2 - 25)).
More generally, it appears that for k = 1,2,3,..., Pi = 16*(2*k)!*Sum_{n >= 1} (-1)^(n+k+1)*n^2/((4*n^2 - 1)* ... *(4*n^2 - (2*k+1)^2)).
Pi = 32*Sum_{n >= 1} (-1)^(n+1)*n^2/(4*n^2 - 1)^2 = 768*Sum_{n >= 1} (-1)^(n+1)*n^2/((4*n^2 - 1)^2*(4*n^2 - 9)^2).
More generally, it appears that for k = 0,1,2,..., Pi = 16*Catalan(k)*(2*k)!*(2*k+2)!*Sum_{n >= 1} (-1)^(n+1)*n^2/((4*n^2 - 1)^2* ... *(4*n^2 - (2*k+1)^2)^2).
Pi = (2^8)*Sum_{n >= 1} (-1)^(n+1)*n^2/(4*n^2 - 1)^4 = (2^17)*(3^5)*Sum_{n >= 2} (-1)^n*n^2*(n^2 - 1)/((4*n^2 - 1)^4*(4*n^2 - 9)^4) = (2^27)*(3^5)*(5^5)* Sum_{n >= 3} (-1)^(n+1)*n^2*(n^2 - 1)*(n^2 - 4)/((4*n^2 - 1)^4*(4*n^2 - 9)^4*(4*n^2 - 25)^4). (End)
For odd n, Pi = (2^(n-1)/A001818((n-1)/2))*gamma(n/2)^2. - Alan Michael Gómez Calderón, Mar 11 2022
Pi = 4/phi + Sum_{n >= 0} (1/phi^(12*n)) * ( 8/((12*n+3)*phi^3) + 4/((12*n+5)*phi^5) - 4/((12*n+7)*phi^7) - 8/((12*n+9)*phi^9) - 4/((12*n+11)*phi^11) + 4/((12*n+13)*phi^13) ) where phi = (1+sqrt(5))/2. - Chittaranjan Pardeshi, May 16 2022
Pi = sqrt(3)*(27*S - 36)/24, where S = A248682. - Peter Luschny, Jul 22 2022
Equals Integral_{x=0..1} 1/sqrt(x-x^2) dx. - Michal Paulovic, Sep 24 2023
From Peter Bala, Oct 28 2023: (Start)
Pi = 48*Sum_{n >= 0} (-1)^n/((6*n + 1)*(6*n + 3)*(6*n + 5)).
More generally, it appears that for k >= 0 we have Pi = A(k) + B(k)*Sum_{n >= 0} (-1)^n/((6*n + 1)*(6*n + 3)*...*(6*n + 6*k + 5)), where A(k) is a rational approximation to Pi and B(k) = (3 * 2^(3*k+3) * (3*k + 2)!) / (2^(3*k+1) - (-1)^k). The first few values of A(k) for k >= 0 are [0, 256/85, 65536/20955, 821559296/261636375, 6308233216/2008080987, 908209489444864/289093830828075, ...].
Pi = 16/5 - (288/5)*Sum_{n >= 0} (-1)^n * (6*n + 1)/((6*n + 1)*(6*n + 3)*...*(6*n + 9)).
More generally, it appears that for k >= 0 we have Pi = C(k) + D(k)*Sum_{n >= 0} (-1)^n* (6*n + 1)/((6*n + 1)*(6*n + 3)*...*(6*n + 6*k + 3)), where C(k) and D(k) are rational numbers. The case k = 0 is the Madhava-Gregory-Leibniz series for Pi.
Pi = 168/53 + (288/53)*Sum_{n >= 0} (-1)^n * (42*n^2 + 25*n)/((6*n + 1)*(6*n + 3)*(6*n + 5)*(6*n + 7)).
More generally, it appears that for k >= 1 we have Pi = E(k) + F(k)*Sum_{n >= 0} (-1)^n * (6*(6*k + 1)*n^2 + (24*k + 1)*n)/((6*n + 1)*(6*n + 3)*...*(6*n + 6*k + 1)), where E(k) and F(k) are rational numbers. (End)
From Peter Bala, Nov 10 2023: (Start)
The series representation Pi = 4 * Sum_{k >= 0} 1/(4*k + 1) - 1/(4*k + 3) given above by Alexander R. Povolotsky, Dec 25 2008, is the case n = 0 of the more general result (obtained by the WZ method): for n >= 0, there holds
Pi = Sum_{j = 0.. n-1} 2^(j+1)/((2*j + 1)*binomial(2*j,j)) + 8*(n+1)!*Sum_{k >= 0} 1/((4*k + 1)*(4*k + 3)*...*(4*k + 2*n + 3)).
Letting n -> oo gives the rapidly converging series Pi = Sum_{j >= 0} 2^(j+1)/((2*j + 1)*binomial(2*j,j)) due to Euler.
More generally, it appears that for n >= 1, Pi = 1/(2*n-1)!!^2 * Sum_{j >= 0} (Product_{i = 0..2*n-1} j - i) * 2^(j+1)/((2*j + 1)*binomial(2*j,j)).
For any integer n, Pi = (-1)^n * 4 * Sum_{k >= 0} 1/(4*k + 1 + 2*n) - 1/(4*k + 3 - 2*n). (End)
Pi = Product_{k>=1} ((k^3*(k + 2)*(2*k + 1)^2)/((k + 1)^4*(2*k - 1)^2))^k. - Antonio Graciá Llorente, Jun 13 2024
Equals Integral_{x=0..2} sqrt(8 - x^2) dx - 2 (see Ambrisi and Rizzi). - Stefano Spezia, Jul 21 2024
Equals 3 + 4*Sum_{k>0} (-1)^(k+1)/(4*k*(1+k)*(1+2*k)) (see Wells at p. 53). - Stefano Spezia, Aug 31 2024
Equals 4*Integral_{x=0..1} sqrt(1 - x^2) dx = lim_{n->oo} (4/n^2)*Sum_{k=0..n} sqrt(n^2 - k^2) (see Finch). - Stefano Spezia, Oct 19 2024
Equals Beta(1/2,1/2) (see Shamos). - Stefano Spezia, Jun 03 2025
From Kritsada Moomuang, Jun 18 2025: (Start)
Equals 2 + Integral_{x=0..1} 1/(sqrt(x)*(1 + sqrt(1 - x))) dx.
Equals 2 + Integral_{x=0..1} log(1 + sqrt(1 - x))/sqrt(x) dx. (End)
Pi = 2*arccos(1/phi) + arccos(1/phi^3) = 4*arcsin(1/phi) + 2*arcsin(1/phi^3) where phi = (1+sqrt(5))/2. - Chittaranjan Pardeshi, Jul 02 2025
Pi = Sum_{n >= 0} zeta(2*n)*(2^(2*n - 1) - 1)/2^(4*n - 3). - Andrea Pinos, Jul 29 2025

Extensions

Additional comments from William Rex Marshall, Apr 20 2001

A013664 Decimal expansion of zeta(6).

Original entry on oeis.org

1, 0, 1, 7, 3, 4, 3, 0, 6, 1, 9, 8, 4, 4, 4, 9, 1, 3, 9, 7, 1, 4, 5, 1, 7, 9, 2, 9, 7, 9, 0, 9, 2, 0, 5, 2, 7, 9, 0, 1, 8, 1, 7, 4, 9, 0, 0, 3, 2, 8, 5, 3, 5, 6, 1, 8, 4, 2, 4, 0, 8, 6, 6, 4, 0, 0, 4, 3, 3, 2, 1, 8, 2, 9, 0, 1, 9, 5, 7, 8, 9, 7, 8, 8, 2, 7, 7, 3, 9, 7, 7, 9, 3, 8, 5, 3, 5, 1, 7
Offset: 1

Views

Author

Keywords

Examples

			1.01734306198444913...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 262.

Crossrefs

Programs

Formula

Equals Pi^6/945 = A092732/945. - Mohammad K. Azarian, Mar 03 2008
zeta(6) = 8/3*2^6/(2^6 - 1)*( Sum_{n even} n^2*p(n)/(n^2 - 1)^7 ), where p(n) = n^6 + 7*n^4 + 7*n^2 + 1 is a row polynomial of A091043. See A013662, A013666, A013668 and A013670. - Peter Bala, Dec 05 2013
Definition: zeta(6) = Sum_{n >= 1} 1/n^6. - Bruno Berselli, Dec 05 2013
zeta(6) = Sum_{n >= 1} (A010052(n)/n^3). - Mikael Aaltonen, Feb 20 2015
zeta(6) = Sum_{n >= 1} (A010057(n)/n^2). - A.H.M. Smeets, Sep 19 2018
zeta(6) = Product_{k>=1} 1/(1 - 1/prime(k)^6). - Vaclav Kotesovec, May 02 2020
From Wolfdieter Lang, Sep 16 2020: (Start)
zeta(6) = (1/5!)*Integral_{x=0..infinity} x^5/(exp(x) - 1) dx. See Abramowitz-Stegun, 23.2.7., for s=6, p. 807. See also A337710 for the value of the integral.
zeta(6) = (4/465)*Integral_{x=0..infinity} x^5/(exp(x) + 1) dx. See Abramowitz-Stegun, 23.2.8., for s=6, p. 807. The value of the integral is (31/252)*Pi^6 = 118.2661309... . (End)
From Peter Bala, Apr 27 2025: (Start)
zeta(6) = 1/6! * Integral_{x >= 0} x^6 * exp(x)/(exp(x) - 1)^2 dx = 2^5/(2^5 - 1) * 1/6! * Integral_{x >= 0} x^6 * exp(x)/(exp(x) + 1)^2 dx.
zeta(6) = 1/7! * Integral_{x >= 0} x^7 * exp(x)*(exp(x) + 1) /(exp(x) - 1)^3 dx = 2/(3*7*15*31) * Integral_{x >= 0} x^7 * exp(x)*(exp(x) - 1)/(exp(x) + 1)^3 dx. (End)

A092425 Decimal expansion of Pi^4.

Original entry on oeis.org

9, 7, 4, 0, 9, 0, 9, 1, 0, 3, 4, 0, 0, 2, 4, 3, 7, 2, 3, 6, 4, 4, 0, 3, 3, 2, 6, 8, 8, 7, 0, 5, 1, 1, 1, 2, 4, 9, 7, 2, 7, 5, 8, 5, 6, 7, 2, 6, 8, 5, 4, 2, 1, 6, 9, 1, 4, 6, 7, 8, 5, 9, 3, 8, 9, 9, 7, 0, 8, 5, 5, 4, 5, 6, 8, 2, 7, 1, 9, 6, 1, 9, 0, 1, 2, 1, 8, 6, 7, 2, 3, 4, 7, 5, 2, 9, 9, 2, 5, 5
Offset: 2

Views

Author

Mohammad K. Azarian, Mar 22 2004

Keywords

Examples

			97.40909103400243723644033268870511124972758567268542169146785938997085...
		

Crossrefs

Cf. A000796 (Pi), A002388 (Pi^2), A091925 (Pi^3), A092731 (Pi^5), A092732 (Pi^6), A092735 (Pi^7), A092736 (Pi^8), A058286 (continued fraction), A013662.

Programs

  • Magma
    R:= RealField(150); (Pi(R))^4; // G. C. Greubel, Mar 09 2018
    
  • Magma
    R:=RealField(110); SetDefaultRealField(R); n:=Pi(R)^4; Reverse(Intseq(Floor(10^98*n))); // Bruno Berselli, Mar 12 2018
  • Mathematica
    RealDigits[Pi^4, 10, 100][[1]] (* G. C. Greubel, Mar 09 2018 *)
  • PARI
    default(realprecision, 20080); x=Pi^4/10; for (n=2, 20000, d=floor(x); x=(x-d)*10; write("b092425.txt", n, " ", d)); \\ Harry J. Smith, Jun 22 2009
    

Formula

Equals 120 * Sum_{j>=1} Sum_{i=1..j-1} 1/(i*j)^2. - Enrique Pérez Herrero, Jun 29 2012
Equals Sum_{k>=1} k*(k+1)*(k+2)*zeta(k+3)/2^(k-1). - Amiram Eldar, May 21 2021
From Peter Bala, Oct 21 2023: (Start)
Pi^4 = 90*Sum_{n >= 1} 1/n^4 (Euler).
The following faster converging series representations for the constant Pi^4 may be easily verified using partial fraction expansions of the summands of the series. Presumably, these are the first three cases of an infinite family of similar results.
Let P(n) = n*(n + 1)*(n + 2)/2!. Then Pi^4 = 1575/16 - 15*Sum_{n >= 1} d/dn(P(n))/P(n)^4.
Let Q(n) = n*(n + 1)*(n + 2)*(n + 3)*(n + 4)/4!. Then Pi^4 = 673165/6912 + Sum_{n >= 1} d/dn(Q(n))/Q(n)^4.
Let R(n) = n*(n + 1)*(n + 2)*(n + 3)*(n + 4)*(n + 5)*(n + 6)/6!. Then Pi^4 = 5610787/57600 - (3/56)*Sum_{n >= 1} d/dn(R(n))/R(n)^4.
Taking 10 terms of the last series gives the approximation Pi^4 = 97.4090910340
024372(50...), correct to 16 decimal places. (End)

A092742 Decimal expansion of 1/Pi^2.

Original entry on oeis.org

1, 0, 1, 3, 2, 1, 1, 8, 3, 6, 4, 2, 3, 3, 7, 7, 7, 1, 4, 4, 3, 8, 7, 9, 4, 6, 3, 2, 0, 9, 7, 2, 7, 6, 3, 8, 9, 0, 4, 3, 5, 8, 7, 7, 4, 6, 7, 2, 2, 4, 6, 5, 4, 8, 8, 4, 5, 6, 0, 9, 0, 3, 1, 8, 9, 4, 1, 7, 3, 1, 2, 0, 9, 6, 2, 2, 3, 5, 4, 4, 1, 1, 9, 1, 2, 0, 9, 2, 7, 3, 9, 2, 5, 6, 2, 1, 8, 3, 7, 6, 1, 3, 6, 2, 2
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 12 2004

Keywords

Comments

The asymptotic density of squarefree numbers that are divisible by 5. - Amiram Eldar, Mar 25 2021

Examples

			0.101321183642337771443879463209727638904358774672246548845609...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 3.6.1, p. 220.

Crossrefs

Cf. A000796 (Pi), A002388 (Pi^2), A091925 (Pi^3), A092425 (Pi^4), A092731 (Pi^5), A092732 (Pi^6), A092735 (Pi^7), A092736 (Pi^8).
Cf. A049541 (1/Pi), A092743 (1/Pi^3), A092744 (1/Pi^4), A092745 (1/Pi^5), A092746 (1/Pi^6), A092747 (1/Pi^7), A092748 (1/Pi^8).

Programs

A275703 Decimal expansion of the Dirichlet eta function at 6.

Original entry on oeis.org

9, 8, 5, 5, 5, 1, 0, 9, 1, 2, 9, 7, 4, 3, 5, 1, 0, 4, 0, 9, 8, 4, 3, 9, 2, 4, 4, 4, 8, 4, 9, 5, 4, 2, 6, 1, 4, 0, 4, 8, 8, 5, 6, 9, 3, 4, 6, 9, 3, 2, 6, 8, 8, 8, 0, 3, 4, 8, 3, 3, 3, 9, 3, 2, 5, 4, 1, 9, 6, 8, 0, 2, 1, 8, 6, 2, 7, 1, 7, 1, 3, 5, 7, 3, 9, 3, 7, 2, 9, 1, 1, 2, 7, 9, 5, 5, 9, 4, 6, 4
Offset: 0

Views

Author

Terry D. Grant, Aug 05 2016

Keywords

Comments

It appears that each sum of a Dirichlet eta function is 1/2^(x-1) less than the zeta(x), where x is a positive integer > 1. In this case, eta(x) = eta(6) = (31/32)*zeta(6) = 31*(Pi^6)/30240. Therefore eta(6) = 1/2^(6-1) or 1/32nd less than zeta(6) (see A013664). [Edited by Petros Hadjicostas, May 07 2020]

Examples

			31*(Pi^6)/30240 = 0.9855510912974...
		

Crossrefs

Cf. A002162 (decimal expansion of value at 1), A072691 (value at 2), A197070 (value at 3), A267315 (value at 4), A267316 (value at 5), A275710 (value at 7).

Programs

  • Mathematica
    RealDigits[31*(Pi^6)/30240,10,100]
  • Sage
    s = RLF(0); s
    RealField(110)(s)
    for i in range(1, 10000): s -= (-1)^i / i^6
    print(s) # Terry D. Grant, Aug 05 2016

Formula

eta(6) = 31*(Pi^6)/30240 = 31*A092732/30240 = Sum_{n>=1} (-1)^(n+1)/n^6.
eta(6) = lim_{n -> infinity} A136677(n)/A334605(n). - Petros Hadjicostas, May 07 2020

A378132 Decimal expansion of L^4/15, where L is the lemniscate constant (A062539).

Original entry on oeis.org

3, 1, 5, 1, 2, 1, 2, 0, 0, 2, 1, 5, 3, 8, 9, 7, 5, 3, 8, 2, 1, 7, 6, 8, 9, 9, 4, 2, 2, 4, 8, 6, 8, 8, 5, 5, 6, 6, 4, 5, 5, 1, 9, 3, 5, 4, 5, 1, 4, 8, 5, 2, 4, 3, 8, 4, 7, 0, 5, 4, 0, 3, 5, 7, 3, 8, 4, 2, 5, 9, 8, 3, 7, 6, 8, 2, 7, 4, 6, 1, 2, 1, 6, 1, 0, 8, 6, 9, 4, 3
Offset: 1

Views

Author

Paolo Xausa, Nov 18 2024

Keywords

Examples

			3.15121200215389753821768994224868855664551935451...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[Pi^6/(60*Gamma[3/4]^8), 10, 100]]

Formula

Equals Pi^6/(60*Gamma(3/4)^8) = A092732/(60*A068465^8).
Equals Sum_{z is a Gaussian integer != 0} 1/z^4.
Equals G_4(i), where G_4 is the Eisenstein series of weight 4.

A092746 Decimal expansion of Pi^(-6).

Original entry on oeis.org

0, 0, 1, 0, 4, 0, 1, 6, 1, 4, 7, 3, 2, 9, 5, 8, 5, 2, 2, 9, 6, 0, 8, 9, 8, 3, 7, 6, 3, 4, 9, 1, 4, 2, 0, 5, 4, 3, 1, 6, 9, 4, 4, 1, 4, 3, 0, 2, 6, 3, 1, 3, 2, 9, 9, 7, 9, 7, 2, 8, 8, 2, 5, 8, 2, 5, 3, 2, 8, 5, 7, 4, 1, 1, 7, 8, 2, 5, 0, 6, 6, 0, 5, 7, 9, 9, 8, 9, 3, 0, 7, 4, 5, 7, 9, 7, 1, 3, 8, 0, 1, 2, 2, 2, 6
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 12 2004

Keywords

Examples

			0.00104016147329585229...
		

Crossrefs

Programs

  • Maple
    evalf(1/Pi^6,100) ; # R. J. Mathar, May 12 2025
  • Mathematica
    Join[{0,0},RealDigits[Pi^-6,10,120][[1]]] (* Harvey P. Dale, Aug 16 2016 *)

Formula

Equals A092743^2 = 1/A092732. - R. J. Mathar, May 12 2025

A100322 a(n) is the smallest positive integer k such that the digits of the fractional part of Pi^k begin with n.

Original entry on oeis.org

1, 7, 6, 4, 8, 23, 25, 2, 15, 91, 51, 307, 49, 1, 102, 315, 112, 12, 76, 26, 115, 208, 77, 276, 161, 40, 13, 41, 7, 99, 174, 169, 86, 453, 110, 204, 53, 6, 67, 4, 228, 123, 37, 134, 158, 192, 33, 45, 61, 200, 31, 324, 8, 56, 34, 105, 148, 17, 19, 92, 23, 38, 27, 39, 32, 82
Offset: 1

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Nov 16 2004

Keywords

Examples

			Pi^1 = 3.14159..., whose digits after the decimal point begin with 1, so a(1)=1.
Pi^2 = 9.869..., whose digits after the decimal point begin with 8, so a(8)=2.
a(14)=1 because Pi^1 = 3.14....
		

Crossrefs

Programs

  • PARI
    a(n) = my(k=1); while (floor(frac(Pi^k)*10^(1+logint(n, 10))) != n, k++); k; \\ Michel Marcus, Jun 18 2022

A300709 Decimal expansion of Pi^6/960.

Original entry on oeis.org

1, 0, 0, 1, 4, 4, 7, 0, 7, 6, 6, 4, 0, 9, 4, 2, 1, 2, 1, 9, 0, 6, 4, 7, 8, 5, 8, 7, 1, 3, 7, 9, 3, 7, 3, 9, 4, 6, 5, 3, 3, 5, 1, 5, 9, 1, 7, 5, 1, 0, 9, 0, 2, 2, 4, 9, 3, 8, 6, 2, 1, 0, 2, 8, 6, 2, 9, 2, 6, 4, 4, 9, 2, 5, 4, 4, 1, 1, 4, 8, 0, 5, 7, 2, 8, 3, 5, 5, 6, 3, 4, 5, 3, 3, 2, 4, 5, 5, 5, 8, 4, 9, 0
Offset: 1

Views

Author

Keywords

Comments

Also the sum of the series Sum_{n>=0} (1/(2n+1)^6), whose value is obtained from zeta(6) given by L. Euler in 1735: Sum_{n>=0}(2n+1)^(-s) = (1-2^(-s))*zeta(s).

Examples

			1.0014470766409421219064785871379373946533515917510902...
		

Crossrefs

Programs

  • MATLAB
    format long; pi^6/960
  • Maple
    evalf((1/960)*Pi^6, 120)
  • Mathematica
    RealDigits[Pi^6/960, 10, 120][[1]]
  • PARI
    default(realprecision, 120); Pi^6/960
    

Formula

Equals A092732/960. - Omar E. Pol, Mar 11 2018
From Artur Jasinski, Jun 24 2025: (Start)
Equals DirichletL(2,1,6).
Equals DirichletL(4,1,6).
Equals DirichletL(8,1,6).
Equals DirichletL(16,1,6). (End)

A212006 Decimal expansion of (2*Pi)^6.

Original entry on oeis.org

6, 1, 5, 2, 8, 9, 0, 8, 3, 8, 8, 8, 1, 9, 4, 8, 3, 9, 6, 9, 9, 3, 4, 0, 4, 4, 3, 9, 3, 7, 5, 4, 8, 7, 3, 5, 2, 7, 5, 0, 1, 9, 2, 1, 7, 9, 7, 1, 8, 6, 9, 8, 3, 4, 2, 0, 2, 2, 8, 8, 7, 5, 9, 9, 8, 9, 8, 2, 0, 1, 0, 4, 2, 1, 9, 1, 0, 4, 1, 3, 6, 6, 3, 9, 5, 0, 1, 7, 0, 1
Offset: 5

Views

Author

Omar E. Pol, Aug 11 2012

Keywords

Examples

			61528.908388819483969934...
		

Crossrefs

Programs

Formula

Equals Product_{k=1..21, gcd(k,21)==1} Gamma(k/21). - Amiram Eldar, Jun 12 2021
Showing 1-10 of 13 results. Next