cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A087013 Decimal expansion of G(1/4) where G is the Barnes G-function.

Original entry on oeis.org

2, 9, 3, 7, 5, 5, 9, 6, 5, 3, 3, 8, 6, 0, 9, 9, 5, 4, 7, 1, 7, 6, 8, 1, 6, 1, 0, 3, 2, 0, 5, 4, 6, 1, 7, 6, 6, 2, 0, 6, 2, 5, 3, 5, 9, 6, 7, 9, 8, 4, 3, 0, 5, 0, 1, 4, 9, 5, 7, 8, 9, 8, 8, 6, 3, 3, 3, 9, 6, 0, 4, 3, 0, 4, 0, 8, 7, 5, 0, 2, 2, 7, 3, 6, 1, 0, 2, 7, 2, 4, 3, 3, 2, 7, 3, 7, 4, 8, 4, 9, 5, 7
Offset: 0

Views

Author

Eric W. Weisstein, Jul 30 2003

Keywords

Examples

			0.29375...
		

Crossrefs

Programs

  • Mathematica
    E^(3/32 - Catalan/(4*Pi))/(Glaisher^(9/8)*Gamma[1/4]^(3/4))
    (* Or, since version 7.0, *) RealDigits[BarnesG[1/4], 10, 102] // First (* Jean-François Alcover, Jul 11 2014 *)
  • PARI
    exp(9/8*zeta'(-1)-Catalan/4/Pi)/gamma(1/4)^(3/4) \\ Charles R Greathouse IV, Dec 12 2013

Formula

G(1/4) * G(3/4) = A087013 * A087015 = exp(3/16) / (A^(9/4) * 2^(1/8) * Pi^(1/4) * GAMMA(1/4)^(1/2)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Mar 01 2015

A087014 Decimal expansion of G(1/2) where G is the Barnes G-function.

Original entry on oeis.org

6, 0, 3, 2, 4, 4, 2, 8, 1, 2, 0, 9, 4, 4, 6, 2, 0, 6, 1, 9, 1, 4, 2, 9, 2, 2, 4, 5, 3, 4, 7, 0, 2, 0, 7, 9, 8, 8, 3, 0, 0, 3, 4, 2, 0, 3, 8, 9, 4, 5, 9, 7, 6, 5, 3, 8, 7, 7, 6, 9, 2, 0, 4, 1, 1, 9, 4, 3, 2, 7, 8, 5, 6, 7, 9, 3, 3, 5, 2, 9, 0, 7, 4, 8, 2, 9, 8, 6, 8, 8, 3, 6, 9, 8, 7, 3, 7, 4, 1, 4, 5, 4
Offset: 0

Views

Author

Eric W. Weisstein, Jul 30 2003

Keywords

Examples

			0.60324...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15 Glaisher-Kinkelin constant, p. 136.

Crossrefs

Programs

  • Mathematica
    (2^(1/24)*E^(1/8))/(Glaisher^(3/2)*Pi^(1/4))
    (* Or, since version 7.0, *) RealDigits[BarnesG[1/2], 10, 102] // First (* Jean-François Alcover, Jul 11 2014 *)
  • PARI
    2^(1/24)*exp(3/2*zeta'(-1))/Pi^(1/4) \\ Charles R Greathouse IV, Dec 12 2013

A087015 Decimal expansion of G(3/4) where G is the Barnes G-function.

Original entry on oeis.org

8, 4, 8, 7, 1, 7, 5, 7, 9, 7, 2, 3, 8, 9, 9, 2, 2, 8, 6, 0, 8, 2, 0, 7, 6, 1, 2, 2, 7, 7, 2, 2, 9, 9, 7, 2, 7, 6, 5, 5, 2, 2, 5, 4, 1, 3, 8, 4, 8, 6, 9, 3, 5, 6, 9, 6, 0, 3, 4, 4, 9, 4, 7, 4, 8, 7, 2, 8, 5, 5, 5, 0, 9, 9, 6, 3, 0, 9, 2, 5, 3, 9, 9, 7, 3, 4, 5, 2, 3, 7, 0, 3, 1, 5, 0, 2, 5, 9, 1, 4, 9, 8
Offset: 0

Views

Author

Eric W. Weisstein, Jul 30 2003

Keywords

Examples

			0.84871...
		

Crossrefs

Programs

  • Mathematica
    E^(3/32 + Catalan/(4*Pi))/(Glaisher^(9/8)*Gamma[3/4]^(1/4))
    (* Or, since version 7.0, *) RealDigits[BarnesG[3/4], 10, 102] // First (* Jean-François Alcover, Jul 11 2014 *)
  • PARI
    exp(Catalan/4/Pi+9/8*zeta'(-1))/gamma(3/4)^(1/4) \\ Charles R Greathouse IV, Dec 12 2013

Formula

G(1/4) * G(3/4) = A087013 * A087015 = exp(3/16) / (A^(9/4) * 2^(1/8) * Pi^(1/4) * GAMMA(1/4)^(1/2)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Mar 01 2015

A087017 Decimal expansion of G(5/2) where G is the Barnes G-function.

Original entry on oeis.org

9, 4, 7, 5, 7, 3, 9, 0, 1, 0, 8, 3, 8, 2, 5, 7, 7, 6, 8, 8, 4, 1, 5, 2, 9, 8, 6, 3, 5, 3, 4, 5, 8, 0, 6, 4, 3, 7, 6, 4, 1, 0, 2, 6, 2, 7, 2, 4, 3, 1, 3, 3, 4, 2, 2, 4, 0, 2, 6, 9, 8, 4, 9, 8, 5, 7, 6, 6, 1, 2, 3, 2, 6, 3, 2, 6, 9, 6, 9, 9, 2, 9, 5, 9, 9, 8, 3, 0, 4, 3, 9, 4, 4, 9, 3, 5, 8, 6, 2, 7, 5, 8
Offset: 0

Views

Author

Eric W. Weisstein, Jul 30 2003

Keywords

Examples

			0.94757...
		

Crossrefs

Programs

  • Mathematica
    (E^(1/8)*Pi^(3/4))/(2^(23/24)*Glaisher^(3/2))
    (* Or, since version 7.0, *) RealDigits[BarnesG[5/2], 10, 102] // First (* Jean-François Alcover, Jul 11 2014 *)
  • PARI
    Pi^(3/4)*exp(3/2*zeta'(-1))/2^(23/24) \\ Charles R Greathouse IV, Dec 12 2013

Formula

Equals A087016 * A019704. - R. J. Mathar, Jul 24 2025

A252799 Decimal expansion of G(2/3) where G is the Barnes G-function.

Original entry on oeis.org

7, 7, 6, 8, 4, 9, 3, 8, 5, 7, 7, 6, 1, 8, 1, 4, 7, 7, 3, 0, 1, 1, 8, 3, 4, 3, 9, 2, 2, 1, 5, 4, 9, 9, 8, 0, 8, 0, 4, 0, 4, 7, 1, 3, 6, 3, 4, 5, 3, 8, 1, 3, 0, 0, 6, 2, 4, 5, 8, 7, 5, 2, 3, 8, 8, 7, 3, 0, 1, 2, 8, 1, 2, 8, 5, 0, 0, 0, 6, 0, 4, 0, 0, 9, 7, 4, 7, 4, 3, 0, 3, 1, 4, 8, 2, 4, 3, 7, 0, 5, 7, 9, 6, 1, 6
Offset: 0

Views

Author

Jean-François Alcover, Dec 22 2014

Keywords

Examples

			0.7768493857761814773011834392215499808040471363453813...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[BarnesG[2/3], 10, 105] // First

Formula

(3^(1/72)*e^(1/9 + (-2*Pi^2 + 3*PolyGamma(1, 1/3))/(36*sqrt(3)*Pi)))/(A^(4/3)*Gamma(2/3)^(1/3)), where PolyGamma(1, .) is the derivative of the digamma function and A the Glaisher-Kinkelin constant (A074962).
G(1/3) * G(2/3) = A252798 * A252799 = 3^(7/36) * exp(2/9) / (A^(8/3) * 2^(1/3) * Pi^(1/3) * Gamma(1/3)^(1/3)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Mar 01 2015

A252798 Decimal expansion of G(1/3) where G is the Barnes G-function.

Original entry on oeis.org

4, 0, 0, 0, 7, 8, 5, 2, 3, 0, 9, 0, 7, 6, 8, 2, 0, 2, 2, 8, 5, 0, 1, 4, 5, 1, 5, 2, 6, 0, 3, 0, 4, 5, 5, 7, 9, 2, 3, 0, 3, 8, 6, 3, 0, 8, 2, 8, 4, 1, 7, 5, 9, 8, 5, 9, 5, 3, 3, 2, 7, 0, 6, 2, 1, 9, 0, 9, 3, 8, 8, 9, 0, 3, 7, 1, 4, 6, 0, 9, 2, 0, 9, 0, 7, 5, 2, 9, 6, 6, 9, 9, 4, 6, 0, 2, 9, 9, 0, 2, 6, 9, 5, 6, 5
Offset: 0

Views

Author

Jean-François Alcover, Dec 22 2014

Keywords

Examples

			0.4000785230907682022850145152603045579230386308284...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[BarnesG[1/3], 10, 105] // First

Formula

(3^(1/72)*e^(1/9 + (2*Pi^2 - 3*PolyGamma(1, 1/3))/(36*sqrt(3)*Pi)))/(A^(4/3)*Gamma(1/3)^(2/3)), where PolyGamma(1, .) is the derivative of the digamma function and A the Glaisher-Kinkelin constant (A074962).
G(1/3) * G(2/3) = A252798 * A252799 = 3^(7/36) * exp(2/9) / (A^(8/3) * 2^(1/3) * Pi^(1/3) * Gamma(1/3)^(1/3)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Mar 01 2015

A185149 a(n) = 3^n*A003046(n+1)/A002457(n).

Original entry on oeis.org

1, 1, 3, 27, 756, 68040, 20207880, 20228087880, 69422797604160, 828491666608045440, 34788365080871828025600, 5191328567558179408948185600, 2776779354844059467693477099212800, 5363460395055494624228658756213491712000
Offset: 0

Views

Author

Paul Barry, Feb 15 2011

Keywords

Comments

a(n) is the determinant of the symmetric matrix (if(j<=floor((i+j)/2), A000108(j+1), A000108(i+1)))_{0<=i,j<=n}.

Crossrefs

Cf. A087014, A087016, A087017 (some values of the Barnes G-function).

Programs

  • Mathematica
    Table[Product[3*(2*k+2)!/((k+3)!*k!),{k,0,n-1}],{n,0,10}] (* Vaclav Kotesovec, Nov 14 2014 *)

Formula

a(n) = Product_{k=0..(n-1)} (A000108(k+2) - A000108(k+1)).
a(n) = Product_{k=0..(n-1)} 3(k+1)*A000108(k+1)/(k+3).
a(n) = Product_{k=0..(n-1)} A000245(k+1).
a(n) = (A^(3/2) 2^(n(n+1))*2^(23/24)*3^n*Pi^(-1/4-n/2)*G(n+3/2)*Gamma(n+1)) /(e^(1/8)*G(n+4)), where G is Barnes G-function, and A is the Glaisher-Kinkelin constant (A074962) (reported by Wolfram Alpha).
a(n) ~ A^(3/2) * 2^(n^2+n+5/24) * 3^n * exp(3*n/2-1/8) / (n^(3*n/2+31/8) * Pi^(n/2+1)), where A = 1.2824271291... is the Glaisher-Kinkelin constant (see A074962). - Vaclav Kotesovec, Nov 14 2014

A252850 Decimal expansion of G(1/6) where G is the Barnes G-function.

Original entry on oeis.org

1, 8, 8, 9, 0, 9, 9, 3, 1, 2, 0, 7, 9, 0, 4, 6, 7, 0, 7, 6, 3, 6, 1, 0, 4, 1, 1, 0, 8, 7, 6, 4, 1, 0, 5, 2, 4, 1, 7, 5, 2, 8, 3, 5, 1, 5, 3, 9, 3, 3, 1, 6, 8, 6, 1, 4, 1, 9, 0, 3, 7, 9, 1, 2, 5, 7, 5, 5, 7, 8, 1, 4, 2, 6, 8, 8, 8, 2, 7, 9, 3, 4, 6, 4, 9, 9, 6, 8, 0, 4, 8, 6, 1, 6, 5, 9, 5, 5, 5, 4, 2, 9, 0, 4, 7
Offset: 0

Views

Author

Jean-François Alcover, Dec 23 2014

Keywords

Examples

			0.1889099312079046707636104110876410524175283515393316861419...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[BarnesG[1/6], 10, 105] // First

Formula

Equals e^(5/72 + Pi/(12*sqrt(3)) - PolyGamma(1, 1/3)/(8*sqrt(3)*Pi))/(2^(1/72)*3^(1/144)*(A*Gamma(1/6))^(5/6)), where PolyGamma(1, .) is the derivative of the digamma function and A the Glaisher-Kinkelin constant (A074962).
G(1/6) * G(5/6) = A252850 * A252851 = exp(5/36) / (A^(5/3) * 2^(7/36) * 3^(1/72) * Pi^(1/6) * Gamma(1/6)^(2/3)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Mar 01 2015

A252851 Decimal expansion of G(5/6) where G is the Barnes G-function.

Original entry on oeis.org

9, 0, 9, 7, 9, 9, 1, 9, 5, 8, 8, 8, 5, 9, 4, 0, 0, 6, 0, 6, 1, 4, 8, 8, 4, 0, 7, 2, 4, 5, 5, 8, 4, 9, 6, 9, 2, 9, 7, 7, 4, 4, 9, 4, 6, 9, 8, 7, 7, 5, 4, 7, 1, 2, 1, 8, 0, 7, 1, 9, 4, 0, 9, 1, 4, 7, 6, 9, 6, 9, 1, 0, 7, 0, 9, 1, 3, 5, 7, 1, 7, 4, 7, 0, 6, 8, 1, 7, 4, 6, 0, 2, 1, 8, 6, 6, 5, 3, 9
Offset: 0

Views

Author

Jean-François Alcover, Dec 23 2014

Keywords

Examples

			0.90979919588859400606148840724558496929774494698775471218...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[BarnesG[5/6], 10, 99] // First

Formula

Equals e^(5/72 - Pi/(12*sqrt(3)) + PolyGamma(1, 1/3)/(8*sqrt(3)*Pi))/(2^(1/72)*3^(1/144)*A^(5/6)*Gamma(5/6)^(1/6)), where PolyGamma(1, .) is the derivative of the digamma function and A the Glaisher-Kinkelin constant (A074962).
G(1/6) * G(5/6) = A252850 * A252851 = exp(5/36) / (A^(5/3) * 2^(7/36) * 3^(1/72) * Pi^(1/6) * Gamma(1/6)^(2/3)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Mar 01 2015

A256717 Decimal expansion of G(5/4) where G is the Barnes G-function.

Original entry on oeis.org

1, 0, 6, 5, 0, 4, 4, 5, 3, 8, 5, 3, 0, 9, 5, 5, 7, 1, 7, 1, 5, 9, 7, 1, 7, 5, 8, 3, 6, 9, 4, 9, 7, 7, 1, 4, 1, 9, 3, 7, 3, 4, 9, 0, 7, 3, 2, 6, 9, 7, 6, 1, 8, 9, 2, 2, 2, 1, 3, 9, 9, 3, 1, 5, 2, 0, 0, 4, 3, 8, 3, 7, 6, 1, 6, 8, 6, 0, 2, 2, 4, 4, 7, 6, 4, 6, 1, 5, 2, 5, 1, 0, 9, 9, 2, 8, 1, 4, 9, 1, 9, 4, 2, 3
Offset: 1

Views

Author

Jean-François Alcover, Apr 09 2015

Keywords

Examples

			1.0650445385309557171597175836949771419373490732697618922213...
		

Crossrefs

Cf. A006752 (Catalan), A068466 (Gamma(1/4)), A074962 (Glaisher), A087013 (G(1/4)), A087014 (G(1/2)), A087015 (G(3/4)), A087016 (G(3/2)), A087017 (G(5/2)).

Programs

  • Mathematica
    RealDigits[BarnesG[5/4], 10, 104] // First
    RealDigits[Exp[3/32 - Catalan/(4*Pi)]*Gamma[1/4]^(1/4)/Glaisher^(9/8), 10, 100][[1]] (* G. C. Greubel, Aug 25 2018 *)
  • PARI
    exp(3/32 - Catalan/(4*Pi))*gamma(1/4)^(1/4)/exp(3/32-9*zeta'(-1)/8) \\ Charles R Greathouse IV, Jul 01 2016

Formula

Equals exp(3/32 - Catalan/(4*Pi))*Gamma(1/4)^(1/4)/Glaisher^(9/8).
Equals G(1/4)*Gamma(1/4). - Vaclav Kotesovec, Apr 09 2015
Showing 1-10 of 11 results. Next