A186252 a(n)=Product{k=0..n-1, (3k+1)*A000108(k)}.
1, 1, 4, 56, 2800, 509600, 342451200, 858867609600, 8105992499404800, 289789231853721600000, 39450746867638243737600000, 20541057076054410196318617600000, 41055903763279774965226732643942400000, 315984464183472044352469495097074620825600000
Offset: 0
Programs
-
Mathematica
Table[Product[(3*k+1)*Binomial[2k,k]/(k+1),{k,0,n-1}],{n,0,10}] (* Vaclav Kotesovec, Nov 14 2014 *)
Formula
a(n) ~ A^(3/2) * 2^(n^2-n-7/24) * 3^n * exp(n/2-1/8) / (GAMMA(1/3) * Pi^(n/2) * n^(n/2+13/24)), where A = 1.2824271291... is the Glaisher-Kinkelin constant (see A074962). - Vaclav Kotesovec, Nov 14 2014
Comments