cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A002194 Decimal expansion of sqrt(3).

Original entry on oeis.org

1, 7, 3, 2, 0, 5, 0, 8, 0, 7, 5, 6, 8, 8, 7, 7, 2, 9, 3, 5, 2, 7, 4, 4, 6, 3, 4, 1, 5, 0, 5, 8, 7, 2, 3, 6, 6, 9, 4, 2, 8, 0, 5, 2, 5, 3, 8, 1, 0, 3, 8, 0, 6, 2, 8, 0, 5, 5, 8, 0, 6, 9, 7, 9, 4, 5, 1, 9, 3, 3, 0, 1, 6, 9, 0, 8, 8, 0, 0, 0, 3, 7, 0, 8, 1, 1, 4, 6, 1, 8, 6, 7, 5, 7, 2, 4, 8, 5, 7, 5, 6, 7, 5, 6, 2, 6, 1, 4, 1, 4, 1, 5, 4
Offset: 1

Views

Author

Keywords

Comments

"The square root of 3, the 2nd number, after root 2, to be proved irrational, by Theodorus."
Length of a diagonal between any vertex of the unit cube and the one corresponding (opposite) vertex not part of the three faces meeting at the original vertex. (Diagonal is hypotenuse of a triangle with sides 1 and sqrt(2)). Hence the diameter of the sphere circumscribed around the unit cube; the ratio of the diameter of any sphere to the edge length of its inscribed cube. - Rick L. Shepherd, Jun 09 2005
The square root of 3 is the length of the minimal Y-shaped (symmetrical) network linking three points unit distance apart. - Lekraj Beedassy, Apr 12 2006
Continued fraction expansion is 1 followed by {1, 2} repeated. - Harry J. Smith, Jun 01 2009
Also, tan(Pi/3) = 2 sin(Pi/3). - M. F. Hasler, Oct 27 2011
Surface of regular tetrahedron with unit edge. - Stanislav Sykora, May 31 2012
This is the case n=6 of Gamma(1/n)*Gamma((n-1)/n)/(Gamma(2/n)*Gamma((n-2)/n)) = 2*cos(Pi/n), therefore sqrt(3) = A175379*A203145/(A073005*A073006). - Bruno Berselli, Dec 13 2012
Ratio of base length to leg length in the isosceles "vampire" triangle, that is, the only isosceles triangle without reflection triangle. The product of cosines of the internal angles of a triangle with sides 1, 1 and sqrt(3) and all similar triangles is -3/8. Hence its reflection triangle is degenerate. See the link below. - Martin Janecke, May 09 2013
Half of the surface of regular octahedron with unit edge (A010469), and one fifth that of a regular icosahedron with unit edge (i.e., 2*A010527). - Stanislav Sykora, Nov 30 2013
Diameter of a sphere whose surface area equals 3*Pi. More generally, the square root of x is also the diameter of a sphere whose surface area equals x*Pi. - Omar E. Pol, Nov 11 2018
Sometimes called Theodorus's constant, after the ancient Greek mathematician Theodorus of Cyrene (5th century BC). - Amiram Eldar, Apr 02 2022
For any triangle ABC, cotan(A) + cotan(B) + cotan(C) >= sqrt(3); equality is obtained only when the triangle is equilateral (see the Kiran S. Kedlaya link). - Bernard Schott, Sep 13 2022

Examples

			1.73205080756887729352744634150587236694280525381038062805580697945193...
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 24, 184.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.4 Irrational Numbers and §12.4 Theorems and Formulas (Solid Geometry), pp. 84, 450.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, Penguin Books, London, England, 1997, page 23.

Crossrefs

Cf. A040001 (continued fraction), A220335.
Cf. A010469 (double), A010527 (half), A131595 (surface of regular dodecahedron).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Sqrt(3); // G. C. Greubel, Aug 21 2018
  • Maple
    evalf(sqrt(3), 100); # Michal Paulovic, Feb 24 2023
  • Mathematica
    RealDigits[Sqrt[3], 10, 100][[1]]
  • PARI
    default(realprecision, 20080); x=(sqrt(3)); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b002194.txt", n, " ", d));  \\ Harry J. Smith, Jun 01 2009
    

Formula

Equals Sum_{k>=0} binomial(2*k,k)/6^k = Sum_{k>=0} binomial(2*k,k) * k/6^k. - Amiram Eldar, Aug 03 2020
sqrt(3) = 1 + 1/2 + 1/(2*3) + 1/(2*3*4) + 1/(2*3*4*2) + 1/(2*3*4*2*8) + 1/(2*3*4*2*8*14) + 1/(2*3*4*2*8*14*2) + 1/(2*3*4*2*8*14*2*98) + 1/(2*3*4*2*8*14*2*98*194) + .... (Define F(n) = (n-1)*sqrt(n^2 - 1) - (n^2 - n - 1). Show F(n) = 1/2 + 1/(2*(n+1)) + 1/(2*(n+1)*(2*n)) + 1/(2*(n+1)*(2*n))*F(2*n^2 - 1) for n >= 0; then iterate this identity at n = 2. See A220335.) - Peter Bala, Mar 18 2022
Equals i^(1/3) + i^(-1/3). - Gary W. Adamson, Jul 06 2022
Equals Product_{n>=1} 3^(1/3^n). - Michal Paulovic, Feb 24 2023
Equals Product_{n>=0} ((6*n + 2)*(6*n + 4))/((6*n + 1)*(6*n + 5)). - Antonio Graciá Llorente, Feb 22 2024
Equals tan(Pi/3) = A010527/(1/2). - R. J. Mathar, Aug 31 2025

Extensions

More terms from Robert G. Wilson v, Dec 07 2000

A002161 Decimal expansion of square root of Pi.

Original entry on oeis.org

1, 7, 7, 2, 4, 5, 3, 8, 5, 0, 9, 0, 5, 5, 1, 6, 0, 2, 7, 2, 9, 8, 1, 6, 7, 4, 8, 3, 3, 4, 1, 1, 4, 5, 1, 8, 2, 7, 9, 7, 5, 4, 9, 4, 5, 6, 1, 2, 2, 3, 8, 7, 1, 2, 8, 2, 1, 3, 8, 0, 7, 7, 8, 9, 8, 5, 2, 9, 1, 1, 2, 8, 4, 5, 9, 1, 0, 3, 2, 1, 8, 1, 3, 7, 4, 9, 5, 0, 6, 5, 6, 7, 3, 8, 5, 4, 4, 6, 6, 5
Offset: 1

Views

Author

Keywords

Comments

Also Gamma(1/2). - Franklin T. Adams-Watters, Apr 07 2006
The integral of the Gaussian function exp(-x^2) over the real line. - Richard Chapling (r.chappers(AT)gmail.com), Jun 05 2008
Also equals the average distance between two points in two dimensions where coordinates are independent normally distributed random variables with mean 0 and variance 1. - Jean-François Alcover, Oct 31 2014, after Steven Finch
Also diameter of a sphere whose surface area equals Pi^2. More generally, the square root of x is also the diameter of a sphere whose surface area equals x*Pi. - Omar E. Pol, Nov 11 2018
Convergents of continued fractions: 7/4, 16/9, 23/13, 39/22, 257/145, 296/167, 8545/4821, ... - R. J. Mathar, Jan 29 2025

Examples

			1.7724538509055160272981674833411451827975494561223871282138...
		

References

  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), p. 190.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.5.4, p. 33.
  • W. E. Mansell, Tables of Natural and Common Logarithms. Royal Society Mathematical Tables, Vol. 8, Cambridge Univ. Press, 1964, p. XVIII.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 43, page 413.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 40.

Crossrefs

Cf. decimal expansions of Gamma(1/k): A073005 (k=3), A068466 (k=4), A175380 (k=5), A175379 (k=6), A220086 (k=7), A203142 (k=8).

Programs

  • Magma
    R:= RealField(100); Sqrt(Pi(R));  // G. C. Greubel, Mar 10 2018
  • Maple
    evalf(sqrt(Pi),120); # Muniru A Asiru, Nov 11 2018
  • Mathematica
    RealDigits[N[Sqrt[Pi], 120]][[1]] (* Richard Chapling (r.chappers(AT)gmail.com), Jun 05 2008 *)
  • PARI
    default(realprecision, 20080); x=sqrt(Pi); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b002161.txt", n, " ", d)); \\ Harry J. Smith, May 01 2009
    

Formula

Equals (1/2) * Sum_{n>=0} ((-1)^n * (4*n+1) * (1/8)^(n+1) * (2^(n+1))^3 * Gamma(n+1/2)^3 / Gamma(n+1)^3). - Alexander R. Povolotsky, Mar 25 2013
Equals Integral_{x=0..1} 1/sqrt(-log(x)) dx. - Jean-François Alcover, Apr 29 2013
Equals Sum_{k>=0} (k+1/2)!/(k+2)!. - Amiram Eldar, Jun 19 2023
Equals Integral_{x=0..oo} exp(-x)/sqrt(x) dx. - Michal Paulovic, Sep 24 2023
Equals Integral_{x=0..oo} 4/(exp(x^2)*(2*x^2 + 1)^2) dx. - Kritsada Moomuang, Jun 05 2025

Extensions

More terms from Franklin T. Adams-Watters, Apr 07 2006

A073005 Decimal expansion of Gamma(1/3).

Original entry on oeis.org

2, 6, 7, 8, 9, 3, 8, 5, 3, 4, 7, 0, 7, 7, 4, 7, 6, 3, 3, 6, 5, 5, 6, 9, 2, 9, 4, 0, 9, 7, 4, 6, 7, 7, 6, 4, 4, 1, 2, 8, 6, 8, 9, 3, 7, 7, 9, 5, 7, 3, 0, 1, 1, 0, 0, 9, 5, 0, 4, 2, 8, 3, 2, 7, 5, 9, 0, 4, 1, 7, 6, 1, 0, 1, 6, 7, 7, 4, 3, 8, 1, 9, 5, 4, 0, 9, 8, 2, 8, 8, 9, 0, 4, 1, 1, 8, 8, 7, 8, 9, 4, 1, 9, 1, 5
Offset: 1

Views

Author

Robert G. Wilson v, Aug 03 2002

Keywords

Comments

Nesterenko proves that this constant is transcendental (he cites Chudnovsky as the first to show this); in fact it is algebraically independent of Pi and exp(sqrt(3)*Pi) over Q. - Charles R Greathouse IV, Nov 11 2013

Examples

			Gamma(1/3) = 2.6789385347077476336556929409746776441286893779573011009...
		

References

  • H. B. Dwight, Tables of Integrals and other Mathematical Data. 860.18, 860.19 in Definite Integrals. New York, U.S.A.: Macmillan Publishing, 1961, p. 230.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.5.4, p. 33.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 43, equation 43:4:8 at page 413.

Crossrefs

Programs

  • Magma
    R:= RealField(100); SetDefaultRealField(R); Gamma(1/3); // G. C. Greubel, Mar 10 2018
  • Mathematica
    RealDigits[ N[ Gamma[1/3], 110]][[1]]
  • PARI
    default(realprecision, 1080); x=gamma(1/3); for (n=1, 1000, d=floor(x); x=(x-d)*10; write("b073005.txt", n, " ", d)); \\ Harry J. Smith, Apr 19 2009
    

Formula

this * A073006 = A186706. - R. J. Mathar, Jan 15 2021
From Amiram Eldar, Jun 25 2021: (Start)
Equals 2^(7/9) * Pi^(1/3) * K((sqrt(3)-1)/(2*sqrt(2)))^(1/3)/3^(1/12), where K is the complete elliptic integral of the first kind.
Equals 2^(7/9) * Pi^(2/3) /(AGM(2, sqrt(2+sqrt(3)))^(1/3) * 3^(1/12)), where AGM is the arithmetic-geometric mean. (End)
From Andrea Pinos, Aug 12 2023: (Start)
Equals Integral_{x=0..oo} 3*exp(-(x^3)) dx = 3*A202623.
General result: Gamma(1/n) = Integral_{x=0..oo} n*exp(-(x^n)) dx. (End)
Equals 3*A202623 = exp(A256165). - Hugo Pfoertner, Jun 28 2024
Equals (2^(1/3)*Pi*C*3^(1/2))^(1/3), where C = A118292 = Integral {0..1} 2/sqrt(1-x^3) is the transcendental butterfly constant. - Jan Lügering, Feb 08 2025

A175379 Decimal expansion of Gamma(1/6).

Original entry on oeis.org

5, 5, 6, 6, 3, 1, 6, 0, 0, 1, 7, 8, 0, 2, 3, 5, 2, 0, 4, 2, 5, 0, 0, 9, 6, 8, 9, 5, 2, 0, 7, 7, 2, 6, 1, 1, 1, 3, 9, 8, 7, 9, 9, 1, 1, 4, 8, 7, 2, 8, 5, 3, 4, 6, 1, 6, 1, 6, 7, 4, 4, 6, 2, 6, 3, 2, 2, 9, 0, 7, 5, 0, 2, 8, 1, 7, 8, 0, 2, 3, 0, 5, 5, 0, 3, 3, 8, 9, 6, 5, 3, 6, 2, 1, 0, 2, 1, 7, 5, 4, 6, 5, 9, 8, 1
Offset: 1

Views

Author

R. J. Mathar, Apr 24 2010

Keywords

Comments

A175379 * A073005 * A002161 * A073006 * A203145 = 4*sqrt(Pi^5/3), which is the case n=6 of Product_{i=1..n-1} Gamma(i/n) = sqrt((2*Pi)^(n-1)/n). - Bruno Berselli, Dec 18 2012
The transcendence of this constant is in the mathematical folklore; see Finch (who credits Nesterenko) and Gun-Murty-Rath. - Charles R Greathouse IV, Nov 11 2013

Examples

			Equals 5.56631600178023...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Gamma(1/6); // G. C. Greubel, Mar 10 2018
  • Maple
    evalf(GAMMA(1/6)) ;
  • Mathematica
    RealDigits[Gamma[1/6], 10, 110][[1]] (* Bruno Berselli, Dec 13 2012 *)
  • PARI
    gamma(1/6) \\ Charles R Greathouse IV, Nov 16 2013
    

Formula

Equals 2*Pi/A203145 = A002194 * A073005^2 / (A002161 * A002580) = A019692 / 1.12878703....

A271919 Numerator of Product_{j=1..n-1} ((3*j+1)/(3*j+2)).

Original entry on oeis.org

1, 4, 7, 7, 13, 104, 494, 988, 190, 5320, 20615, 589, 1147, 11470, 246605, 246605, 2416729, 62834954, 4488211, 4488211, 8831641, 10869712, 182067676, 2548947464, 2514502228, 27300309904, 134795280151, 269590560302, 3134773957, 25078191656, 570528860174, 60055669492, 59442856538
Offset: 1

Views

Author

N. J. A. Sloane, May 04 2016

Keywords

Examples

			1, 4/5, 7/10, 7/11, 13/22, 104/187, 494/935, 988/1955, 190/391, 5320/11339,  20615/45356, 589/1334, 1147/2668, 11470/27347, ...
		

Crossrefs

Sequences of fractions from de Gier paper: A271919-A271926.
Cf. A271920 (denominators), A002161, A203145.

Programs

  • Maple
    f:=proc(n) local j;
    mul(((3*j+1)/(3*j+2)),j=1..n-1); end;
    t1:=[seq(f(n),n=1..50)];
    map(numer,t1);
    map(denom,t1);
  • Mathematica
    a[n_] := Product[(3j + 1)/(3j + 2), {j, 1, n - 1}] // Numerator;
    Array[a, 33] (* Jean-François Alcover, Nov 17 2017 *)
  • PARI
    a(n) = numerator(prod(j=1, n-1, ((3*j+1)/(3*j+2)))); \\ Michel Marcus, Nov 17 2017

Formula

a(n)/A271920(n) ~ c * (4/n)^(1/3), where c = Gamma(5/6)/sqrt(Pi) = A203145/A002161. - Amiram Eldar, Aug 17 2025

A025751 6th-order Patalan numbers (generalization of Catalan numbers).

Original entry on oeis.org

1, 1, 15, 330, 8415, 232254, 6735366, 202060980, 6213375135, 194685754230, 6191006984514, 199237861137996, 6475230486984870, 212188322111965740, 7002214629694869420, 232473525705869664744, 7758803920433400060831, 260148131449825766745510, 8758320425477467480432170
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(7 - (1 - 36*x)^(1/6))/6, {x, 0, 20}], x] (* Vincenzo Librandi, Dec 29 2012 *)
    a[n_] := 36^(n-1) * Pochhammer[5/6, n-1]/n!; a[0] = 1; Array[a, 20, 0] (* Amiram Eldar, Aug 20 2025 *)
  • Maxima
    a[0]:1$ a[1]:1$ a[n]:=(6/n)*(6*n-7)*a[n-1]$ makelist(a[n],n,0,1000); /* Tani Akinari, Aug 03 2014 */

Formula

G.f.: (7-(1-36*x)^(1/6))/6.
a(n) = 6^(n-1)*5*A034787(n-1)/n!, n >= 2, where 5*A034787(n-1)=(6*n-7)(!^6) = Product_{j=2..n} (6*j - 7). - Wolfdieter Lang.
a(n) ~ 36^(n-1) / (Gamma(5/6) * n^(7/6)). - Amiram Eldar, Aug 20 2025

A203131 Decimal expansion of (5/6)! = Gamma(11/6).

Original entry on oeis.org

9, 4, 0, 6, 5, 5, 8, 5, 8, 2, 5, 6, 7, 7, 1, 6, 3, 4, 3, 8, 4, 0, 8, 4, 2, 4, 1, 8, 8, 2, 3, 6, 8, 3, 4, 4, 4, 3, 8, 9, 8, 9, 5, 3, 4, 7, 2, 0, 6, 2, 9, 5, 4, 3, 1, 2, 6, 7, 3, 6, 2, 6, 1, 9, 4, 4, 8, 0, 8, 7, 5, 9, 1, 5, 6, 2, 5, 3, 3, 2, 2, 5, 4, 6, 1, 6, 7, 4, 2, 0, 3, 6, 5, 3, 4, 1, 4, 6, 4
Offset: 0

Views

Author

N. J. A. Sloane, Dec 29 2011

Keywords

Examples

			.94065585825677163438408424188236834443898953472062954312673...
		

Crossrefs

Cf. A203145.

Programs

Formula

Equals 5*A203145/6. - R. J. Mathar, Jan 15 2021
Equals Integral_{x=0..oo} exp(-x^(6/5)) dx. - Ilya Gutkovskiy, Apr 10 2024

A271921 Numerator of n*Product_{j=1..n-1} ((3*j + 1)/(3*j + 2)).

Original entry on oeis.org

1, 8, 21, 28, 65, 624, 3458, 7904, 1710, 53200, 226765, 3534, 14911, 160580, 3699075, 3945680, 41084393, 1131029172, 85276009, 44882110, 185464461, 239133664, 4187556548, 61174739136, 62862555700, 709808057504, 3639472564077, 7548535688456, 90908444753, 752345749680, 17686394665394
Offset: 1

Views

Author

N. J. A. Sloane, May 04 2016

Keywords

Examples

			1, 8/5, 21/10, 28/11, 65/22, 624/187, 3458/935, 7904/1955, 1710/391, 53200/ 11339, 226765/45356, 3534/667, 14911/2668, 160580/27347, 3699075/601634, ...
		

Crossrefs

Cf. A271922 (denominators), A002161, A203145.
Sequences of fractions from de Gier paper: A271919, A271920, A271922, A271923, A271924, A271925, A271926.

Programs

  • Maple
    f:=proc(n) local j;
    mul(((3*j+1)/(3*j+2)),j=1..n-1); end;
    t2:=[seq(n*f(n),n=1..50)];
    map(numer,t2);
    map(denom,t2);
  • Mathematica
    Table[n*Product[(3*j+1)/(3*j+2), {j, 1, n-1}] // Numerator, {n, 1, 31}] (* Jean-François Alcover, Mar 25 2018 *)
  • PARI
    a(n) = numerator(n*prod(j=1, n-1, (3*j + 1)/(3*j + 2))); \\ Michel Marcus, Mar 25 2018

Formula

a(n)/A271922(n) ~ c * (2*n)^(2/3), where c = Gamma(5/6)/sqrt(Pi) = A203145/A002161. - Amiram Eldar, Aug 17 2025

A357318 Decimal expansion of 1/(2*L), where L is the conjectured Landau's constant A081760.

Original entry on oeis.org

9, 2, 0, 3, 7, 1, 3, 7, 3, 3, 1, 7, 9, 4, 2, 4, 9, 7, 6, 5, 5, 5, 1, 8, 5, 6, 4, 5, 4, 3, 1, 7, 2, 9, 9, 4, 7, 2, 6, 2, 4, 5, 7, 9, 1, 9, 4, 9, 8, 9, 4, 3, 3, 8, 3, 4, 3, 3, 0, 0, 1, 9, 9, 7, 7, 3, 1, 0, 1, 8, 0, 8, 0, 8, 0, 5, 6, 8, 5, 6, 3, 9, 3, 6, 3, 3, 8, 5
Offset: 0

Views

Author

Stefano Spezia, Sep 23 2022

Keywords

Examples

			0.9203713733179424976555185645431729947262...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[N[Gamma[1/6]/(2Gamma[1/3]Gamma[5/6]),88]]]
  • PARI
    1/(2*gamma(1/3)*gamma(5/6)/gamma(1/6)) \\ Michel Marcus, Sep 24 2022

Formula

Equals 1/(2*A081760) = A175379/(2*A073005*A203145).
Equals Sum_{k,m in Z^2} exp(-Pi*(2/sqrt(3))*(k^2+k*m+m^2))*exp(2*Pi*i*(k/3-m/3)).
Equals Sum_{k>=0} (binomial(-1/3,2*k)^2 - binomial(-1/3,2*k+1)^2). - Gerry Martens, Jul 24 2023
Equals 3*Gamma(1/3)^3 / (2^(8/3) * Pi^2). - Vaclav Kotesovec, Jul 27 2023

A355178 Decimal expansion of 2^(-2/3)/L, where L is the conjectured Landau's constant A081760.

Original entry on oeis.org

1, 1, 5, 9, 5, 9, 5, 2, 6, 6, 9, 6, 3, 9, 2, 8, 3, 6, 5, 7, 6, 9, 9, 9, 2, 0, 5, 1, 5, 7, 0, 0, 2, 0, 8, 8, 1, 9, 4, 5, 1, 6, 5, 2, 6, 3, 4, 3, 9, 7, 8, 2, 8, 5, 5, 2, 6, 3, 1, 0, 5, 0, 5, 9, 7, 4, 7, 9, 7, 3, 7, 5, 7, 2, 0, 5, 2, 8, 6, 2, 5, 8, 6, 5, 8, 0, 8, 5, 2, 5
Offset: 1

Views

Author

Stefano Spezia, Sep 23 2022

Keywords

Examples

			1.159595266963928365769992051570020881945...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[N[2^(1/3)*Gamma[1/6]/(2Gamma[1/3]Gamma[5/6]), 90]]]

Formula

Equals Sum_{k,m in Z^2} exp(-Pi*(2/sqrt(3))*(k^2+k*m+m^2)).
From Gerry Martens, Jul 29 2023: (Start)
Equals hypergeom([1/3, 2/3], [1], 1/2).
Equals sqrt(Pi)/(Gamma(2/3)*Gamma(5/6)). (End)
Showing 1-10 of 11 results. Next