A271926
Denominator of (Product_{j=0..n-1} (((2*j+1)*(3*j+4))/((j+1)*(6*j+1))) - 1).
Original entry on oeis.org
1, 1, 13, 19, 95, 155, 5735, 49321, 345247, 11137, 97051, 175741, 12829093, 164988103, 164988103, 306406477, 2286263713, 235485162439, 25667882705851, 420784962391, 420784962391, 8773680484481, 166699929205139, 317414933691977, 16706049141683, 31931815448027, 5013295025340239
Offset: 1
3, 5, 87/13, 156/19, 913/95, 1693/155, 69769/5735, 658529/49321, 5002953/345247, 173619/11137, 1616141/97051, 3107877/175741, 239756907/12829093, ...
-
f3:=proc(n) local j;
(mul(((2*j+1)*(3*j+4))/((j+1)*(6*j+1)),j=0..n-1)-1); end;
t3:=[seq(f3(n),n=1..50)];
map(numer,t3);
map(denom,t3);
-
Table[Product[(2*j+1)*(3*j+4)/((j+1)*(6*j+1)),{j,0,n-1}]-1, {n,1,20}]//Denominator (* Vaclav Kotesovec, Oct 13 2017 *)
A271924
Denominator of (1/3)*(Product_{j=0..n-1} (((2*j+1)*(3*j+4))/((j+1)*(6*j+1))) - 1).
Original entry on oeis.org
1, 3, 13, 19, 285, 465, 17205, 147963, 345247, 11137, 291153, 175741, 12829093, 494964309, 494964309, 919219431, 6858791139, 706455487317, 77003648117553, 1262354887173, 1262354887173, 26321041453443, 500099787615417, 952244801075931, 50118147425049, 95795446344081
Offset: 1
1, 5/3, 29/13, 52/19, 913/285, 1693/465, 69769/17205, 658529/147963, 1667651/ 345247, 57873/11137, 1616141/291153, 1035959/175741, 79918969/12829093, ...
-
f3:=proc(n) local j;
(1/3)*(mul(((2*j+1)*(3*j+4))/((j+1)*(6*j+1)),j=0..n-1)-1); end;
t3:=[seq(f3(n),n=1..50)];
map(numer,t3);
map(denom,t3);
-
a[n_] := (1/3)*(Product[((2*j + 1)*(3*j + 4))/((j + 1)*(6*j + 1)), {j, 0, n - 1}] - 1) // Denominator;
Array[a, 26] (* Jean-François Alcover, Nov 30 2017 *)
A271920
Denominator of Product_{j=1..n-1} ((3*j+1)/(3*j+2)).
Original entry on oeis.org
1, 5, 10, 11, 22, 187, 935, 1955, 391, 11339, 45356, 1334, 2668, 27347, 601634, 614713, 6147130, 162898945, 11847196, 12051458, 24102916, 30128645, 512186965, 7273054903, 7273054903, 80003603933, 400018019665, 809792576395, 9526971487, 77081860213, 1772882784899, 188604551585, 188604551585
Offset: 1
1, 4/5, 7/10, 7/11, 13/22, 104/187, 494/935, 988/1955, 190/391, 5320/11339, 20615/45356, 589/1334, 1147/2668, 11470/27347, ...
-
f:=proc(n) local j;
mul(((3*j+1)/(3*j+2)),j=1..n-1); end;
t1:=[seq(f(n),n=1..50)];
map(numer,t1);
map(denom,t1);
-
Table[Product[(3*j+1)/(3*j+2), {j, 1, n-1}] // Denominator, {n, 1, 33}] (* Jean-François Alcover, Mar 25 2018 *)
-
a(n) = denominator(prod(j=1, n-1, (3*j+1)/(3*j+2))); \\ Michel Marcus, Mar 25 2018
A271922
Denominator of n*Product_{j=1..n-1} ((3*j + 1)/(3*j + 2)).
Original entry on oeis.org
1, 5, 10, 11, 22, 187, 935, 1955, 391, 11339, 45356, 667, 2668, 27347, 601634, 614713, 6147130, 162898945, 11847196, 6025729, 24102916, 30128645, 512186965, 7273054903, 7273054903, 80003603933, 400018019665, 809792576395, 9526971487, 77081860213, 1772882784899, 188604551585, 188604551585
Offset: 1
1, 8/5, 21/10, 28/11, 65/22, 624/187, 3458/935, 7904/1955, 1710/391, 53200/ 11339, 226765/45356, 3534/667, 14911/2668, 160580/27347, 3699075/601634, ...
-
f:=proc(n) local j;
mul(((3*j+1)/(3*j+2)),j=1..n-1); end;
t2:=[seq(n*f(n),n=1..50)];
map(numer,t2);
map(denom,t2);
-
Table[Denominator[n Product[(3j+1)/(3j+2), {j, 1, n-1}]], {n, 1, 33}] (* Jean-François Alcover, Dec 16 2018 *)
-
a(n) = denominator(n*prod(j=1, n-1, (3*j + 1)/(3*j + 2))); \\ Michel Marcus, Dec 16 2018
A271923
Numerator of (1/3)*(Product_{j=0..n-1} (((2*j+1)*(3*j+4))/((j+1)*(6*j+1))) - 1).
Original entry on oeis.org
1, 5, 29, 52, 913, 1693, 69769, 658529, 1667651, 57873, 1616141, 1035959, 79918969, 3244922897, 3402714857, 6606018008, 51386679347, 5504537914811, 622652618545649, 10572475711004, 10931562934889, 235301799307039, 4608689892802861, 9034390134407023, 488936376609325, 959905250448181
Offset: 1
1, 5/3, 29/13, 52/19, 913/285, 1693/465, 69769/17205, 658529/147963, 1667651/ 345247, 57873/11137, 1616141/291153, 1035959/175741, 79918969/12829093, ...
-
f3:=proc(n) local j;
(1/3)*(mul(((2*j+1)*(3*j+4))/((j+1)*(6*j+1)),j=0..n-1)-1); end;
t3:=[seq(f3(n),n=1..50)];
map(numer,t3);
map(denom,t3);
-
a[n_] := (1/3)*(Product[((2*j + 1)*(3*j + 4))/((j + 1)*(6*j + 1)), {j, 0, n - 1}] - 1) // Numerator;
Array[a, 26] (* Jean-François Alcover, Nov 30 2017 *)
A271925
Numerator of (Product_{j=0..n-1} (((2*j+1)*(3*j+4))/((j+1)*(6*j+1))) - 1).
Original entry on oeis.org
3, 5, 87, 156, 913, 1693, 69769, 658529, 5002953, 173619, 1616141, 3107877, 239756907, 3244922897, 3402714857, 6606018008, 51386679347, 5504537914811, 622652618545649, 10572475711004, 10931562934889, 235301799307039, 4608689892802861, 9034390134407023, 488936376609325, 959905250448181
Offset: 1
3, 5, 87/13, 156/19, 913/95, 1693/155, 69769/5735, 658529/49321, 5002953/345247, 173619/11137, 1616141/97051, 3107877/175741, 239756907/12829093, ...
-
f3:=proc(n) local j;
(mul(((2*j+1)*(3*j+4))/((j+1)*(6*j+1)),j=0..n-1)-1); end;
t3:=[seq(f3(n),n=1..50)];
map(numer,t3);
map(denom,t3);
-
Table[Product[(2*j+1)*(3*j+4)/((j+1)*(6*j+1)),{j,0,n-1}]-1, {n,1,20}]//Numerator (* Vaclav Kotesovec, Oct 13 2017 *)
A271921
Numerator of n*Product_{j=1..n-1} ((3*j + 1)/(3*j + 2)).
Original entry on oeis.org
1, 8, 21, 28, 65, 624, 3458, 7904, 1710, 53200, 226765, 3534, 14911, 160580, 3699075, 3945680, 41084393, 1131029172, 85276009, 44882110, 185464461, 239133664, 4187556548, 61174739136, 62862555700, 709808057504, 3639472564077, 7548535688456, 90908444753, 752345749680, 17686394665394
Offset: 1
1, 8/5, 21/10, 28/11, 65/22, 624/187, 3458/935, 7904/1955, 1710/391, 53200/ 11339, 226765/45356, 3534/667, 14911/2668, 160580/27347, 3699075/601634, ...
-
f:=proc(n) local j;
mul(((3*j+1)/(3*j+2)),j=1..n-1); end;
t2:=[seq(n*f(n),n=1..50)];
map(numer,t2);
map(denom,t2);
-
Table[n*Product[(3*j+1)/(3*j+2), {j, 1, n-1}] // Numerator, {n, 1, 31}] (* Jean-François Alcover, Mar 25 2018 *)
-
a(n) = numerator(n*prod(j=1, n-1, (3*j + 1)/(3*j + 2))); \\ Michel Marcus, Mar 25 2018
Showing 1-7 of 7 results.