cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A271919 Numerator of Product_{j=1..n-1} ((3*j+1)/(3*j+2)).

Original entry on oeis.org

1, 4, 7, 7, 13, 104, 494, 988, 190, 5320, 20615, 589, 1147, 11470, 246605, 246605, 2416729, 62834954, 4488211, 4488211, 8831641, 10869712, 182067676, 2548947464, 2514502228, 27300309904, 134795280151, 269590560302, 3134773957, 25078191656, 570528860174, 60055669492, 59442856538
Offset: 1

Views

Author

N. J. A. Sloane, May 04 2016

Keywords

Examples

			1, 4/5, 7/10, 7/11, 13/22, 104/187, 494/935, 988/1955, 190/391, 5320/11339,  20615/45356, 589/1334, 1147/2668, 11470/27347, ...
		

Crossrefs

Sequences of fractions from de Gier paper: A271919-A271926.
Cf. A271920 (denominators), A002161, A203145.

Programs

  • Maple
    f:=proc(n) local j;
    mul(((3*j+1)/(3*j+2)),j=1..n-1); end;
    t1:=[seq(f(n),n=1..50)];
    map(numer,t1);
    map(denom,t1);
  • Mathematica
    a[n_] := Product[(3j + 1)/(3j + 2), {j, 1, n - 1}] // Numerator;
    Array[a, 33] (* Jean-François Alcover, Nov 17 2017 *)
  • PARI
    a(n) = numerator(prod(j=1, n-1, ((3*j+1)/(3*j+2)))); \\ Michel Marcus, Nov 17 2017

Formula

a(n)/A271920(n) ~ c * (4/n)^(1/3), where c = Gamma(5/6)/sqrt(Pi) = A203145/A002161. - Amiram Eldar, Aug 17 2025

A271924 Denominator of (1/3)*(Product_{j=0..n-1} (((2*j+1)*(3*j+4))/((j+1)*(6*j+1))) - 1).

Original entry on oeis.org

1, 3, 13, 19, 285, 465, 17205, 147963, 345247, 11137, 291153, 175741, 12829093, 494964309, 494964309, 919219431, 6858791139, 706455487317, 77003648117553, 1262354887173, 1262354887173, 26321041453443, 500099787615417, 952244801075931, 50118147425049, 95795446344081
Offset: 1

Views

Author

N. J. A. Sloane, May 04 2016

Keywords

Examples

			1, 5/3, 29/13, 52/19, 913/285, 1693/465, 69769/17205, 658529/147963, 1667651/ 345247, 57873/11137, 1616141/291153, 1035959/175741, 79918969/12829093, ...
		

Crossrefs

Sequences of fractions from de Gier paper: A271919-A271926.

Programs

  • Maple
    f3:=proc(n) local j;
    (1/3)*(mul(((2*j+1)*(3*j+4))/((j+1)*(6*j+1)),j=0..n-1)-1); end;
    t3:=[seq(f3(n),n=1..50)];
    map(numer,t3);
    map(denom,t3);
  • Mathematica
    a[n_] := (1/3)*(Product[((2*j + 1)*(3*j + 4))/((j + 1)*(6*j + 1)), {j, 0, n - 1}] - 1) // Denominator;
    Array[a, 26] (* Jean-François Alcover, Nov 30 2017 *)

A271920 Denominator of Product_{j=1..n-1} ((3*j+1)/(3*j+2)).

Original entry on oeis.org

1, 5, 10, 11, 22, 187, 935, 1955, 391, 11339, 45356, 1334, 2668, 27347, 601634, 614713, 6147130, 162898945, 11847196, 12051458, 24102916, 30128645, 512186965, 7273054903, 7273054903, 80003603933, 400018019665, 809792576395, 9526971487, 77081860213, 1772882784899, 188604551585, 188604551585
Offset: 1

Views

Author

N. J. A. Sloane, May 04 2016

Keywords

Examples

			1, 4/5, 7/10, 7/11, 13/22, 104/187, 494/935, 988/1955, 190/391, 5320/11339, 20615/45356, 589/1334, 1147/2668, 11470/27347, ...
		

Crossrefs

Cf. A271919 (numerators).
Other sequences of fractions from de Gier paper: A271921, A271922, A271923, A271924, A271925, A271926.

Programs

  • Maple
    f:=proc(n) local j;
    mul(((3*j+1)/(3*j+2)),j=1..n-1); end;
    t1:=[seq(f(n),n=1..50)];
    map(numer,t1);
    map(denom,t1);
  • Mathematica
    Table[Product[(3*j+1)/(3*j+2), {j, 1, n-1}] // Denominator, {n, 1, 33}] (* Jean-François Alcover, Mar 25 2018 *)
  • PARI
    a(n) = denominator(prod(j=1, n-1, (3*j+1)/(3*j+2))); \\ Michel Marcus, Mar 25 2018

A271922 Denominator of n*Product_{j=1..n-1} ((3*j + 1)/(3*j + 2)).

Original entry on oeis.org

1, 5, 10, 11, 22, 187, 935, 1955, 391, 11339, 45356, 667, 2668, 27347, 601634, 614713, 6147130, 162898945, 11847196, 6025729, 24102916, 30128645, 512186965, 7273054903, 7273054903, 80003603933, 400018019665, 809792576395, 9526971487, 77081860213, 1772882784899, 188604551585, 188604551585
Offset: 1

Views

Author

N. J. A. Sloane, May 04 2016

Keywords

Examples

			1, 8/5, 21/10, 28/11, 65/22, 624/187, 3458/935, 7904/1955, 1710/391, 53200/ 11339, 226765/45356, 3534/667, 14911/2668, 160580/27347, 3699075/601634, ...
		

Crossrefs

Sequences of fractions from de Gier paper: A271919-A271926.

Programs

  • Maple
    f:=proc(n) local j;
    mul(((3*j+1)/(3*j+2)),j=1..n-1); end;
    t2:=[seq(n*f(n),n=1..50)];
    map(numer,t2);
    map(denom,t2);
  • Mathematica
    Table[Denominator[n Product[(3j+1)/(3j+2), {j, 1, n-1}]], {n, 1, 33}] (* Jean-François Alcover, Dec 16 2018 *)
  • PARI
    a(n) = denominator(n*prod(j=1, n-1, (3*j + 1)/(3*j + 2))); \\ Michel Marcus, Dec 16 2018

A271923 Numerator of (1/3)*(Product_{j=0..n-1} (((2*j+1)*(3*j+4))/((j+1)*(6*j+1))) - 1).

Original entry on oeis.org

1, 5, 29, 52, 913, 1693, 69769, 658529, 1667651, 57873, 1616141, 1035959, 79918969, 3244922897, 3402714857, 6606018008, 51386679347, 5504537914811, 622652618545649, 10572475711004, 10931562934889, 235301799307039, 4608689892802861, 9034390134407023, 488936376609325, 959905250448181
Offset: 1

Views

Author

N. J. A. Sloane, May 04 2016

Keywords

Examples

			1, 5/3, 29/13, 52/19, 913/285, 1693/465, 69769/17205, 658529/147963, 1667651/ 345247, 57873/11137, 1616141/291153, 1035959/175741, 79918969/12829093, ...
		

Crossrefs

Sequences of fractions from de Gier paper: A271919-A271926.
Cf. A271924 (denominators), A073005, A186706.

Programs

  • Maple
    f3:=proc(n) local j;
    (1/3)*(mul(((2*j+1)*(3*j+4))/((j+1)*(6*j+1)),j=0..n-1)-1); end;
    t3:=[seq(f3(n),n=1..50)];
    map(numer,t3);
    map(denom,t3);
  • Mathematica
    a[n_] := (1/3)*(Product[((2*j + 1)*(3*j + 4))/((j + 1)*(6*j + 1)), {j, 0, n - 1}] - 1) // Numerator;
    Array[a, 26] (* Jean-François Alcover, Nov 30 2017 *)

Formula

a(n)/A271924(n) ~ c * (2*n)^(2/3), where c = Gamma(1/3)*sqrt(3)/(2*Pi) = A073005/A186706. - Amiram Eldar, Aug 17 2025

A271925 Numerator of (Product_{j=0..n-1} (((2*j+1)*(3*j+4))/((j+1)*(6*j+1))) - 1).

Original entry on oeis.org

3, 5, 87, 156, 913, 1693, 69769, 658529, 5002953, 173619, 1616141, 3107877, 239756907, 3244922897, 3402714857, 6606018008, 51386679347, 5504537914811, 622652618545649, 10572475711004, 10931562934889, 235301799307039, 4608689892802861, 9034390134407023, 488936376609325, 959905250448181
Offset: 1

Views

Author

N. J. A. Sloane, May 04 2016

Keywords

Examples

			3, 5, 87/13, 156/19, 913/95, 1693/155, 69769/5735, 658529/49321, 5002953/345247, 173619/11137, 1616141/97051, 3107877/175741, 239756907/12829093, ...
		

Crossrefs

Sequences of fractions from de Gier paper: A271919-A271926.
Cf. A271926 (denominators), A073005, A186706.

Programs

  • Maple
    f3:=proc(n) local j;
    (mul(((2*j+1)*(3*j+4))/((j+1)*(6*j+1)),j=0..n-1)-1); end;
    t3:=[seq(f3(n),n=1..50)];
    map(numer,t3);
    map(denom,t3);
  • Mathematica
    Table[Product[(2*j+1)*(3*j+4)/((j+1)*(6*j+1)),{j,0,n-1}]-1, {n,1,20}]//Numerator (* Vaclav Kotesovec, Oct 13 2017 *)

Formula

a(n)/A271926(n) ~ c * (2*n)^(2/3), where c = Gamma(1/3)*3^(3/2)/(2*Pi) = 3*A073005/A186706. - Amiram Eldar, Aug 17 2025

A271921 Numerator of n*Product_{j=1..n-1} ((3*j + 1)/(3*j + 2)).

Original entry on oeis.org

1, 8, 21, 28, 65, 624, 3458, 7904, 1710, 53200, 226765, 3534, 14911, 160580, 3699075, 3945680, 41084393, 1131029172, 85276009, 44882110, 185464461, 239133664, 4187556548, 61174739136, 62862555700, 709808057504, 3639472564077, 7548535688456, 90908444753, 752345749680, 17686394665394
Offset: 1

Views

Author

N. J. A. Sloane, May 04 2016

Keywords

Examples

			1, 8/5, 21/10, 28/11, 65/22, 624/187, 3458/935, 7904/1955, 1710/391, 53200/ 11339, 226765/45356, 3534/667, 14911/2668, 160580/27347, 3699075/601634, ...
		

Crossrefs

Cf. A271922 (denominators), A002161, A203145.
Sequences of fractions from de Gier paper: A271919, A271920, A271922, A271923, A271924, A271925, A271926.

Programs

  • Maple
    f:=proc(n) local j;
    mul(((3*j+1)/(3*j+2)),j=1..n-1); end;
    t2:=[seq(n*f(n),n=1..50)];
    map(numer,t2);
    map(denom,t2);
  • Mathematica
    Table[n*Product[(3*j+1)/(3*j+2), {j, 1, n-1}] // Numerator, {n, 1, 31}] (* Jean-François Alcover, Mar 25 2018 *)
  • PARI
    a(n) = numerator(n*prod(j=1, n-1, (3*j + 1)/(3*j + 2))); \\ Michel Marcus, Mar 25 2018

Formula

a(n)/A271922(n) ~ c * (2*n)^(2/3), where c = Gamma(5/6)/sqrt(Pi) = A203145/A002161. - Amiram Eldar, Aug 17 2025
Showing 1-7 of 7 results.