cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A002161 Decimal expansion of square root of Pi.

Original entry on oeis.org

1, 7, 7, 2, 4, 5, 3, 8, 5, 0, 9, 0, 5, 5, 1, 6, 0, 2, 7, 2, 9, 8, 1, 6, 7, 4, 8, 3, 3, 4, 1, 1, 4, 5, 1, 8, 2, 7, 9, 7, 5, 4, 9, 4, 5, 6, 1, 2, 2, 3, 8, 7, 1, 2, 8, 2, 1, 3, 8, 0, 7, 7, 8, 9, 8, 5, 2, 9, 1, 1, 2, 8, 4, 5, 9, 1, 0, 3, 2, 1, 8, 1, 3, 7, 4, 9, 5, 0, 6, 5, 6, 7, 3, 8, 5, 4, 4, 6, 6, 5
Offset: 1

Views

Author

Keywords

Comments

Also Gamma(1/2). - Franklin T. Adams-Watters, Apr 07 2006
The integral of the Gaussian function exp(-x^2) over the real line. - Richard Chapling (r.chappers(AT)gmail.com), Jun 05 2008
Also equals the average distance between two points in two dimensions where coordinates are independent normally distributed random variables with mean 0 and variance 1. - Jean-François Alcover, Oct 31 2014, after Steven Finch
Also diameter of a sphere whose surface area equals Pi^2. More generally, the square root of x is also the diameter of a sphere whose surface area equals x*Pi. - Omar E. Pol, Nov 11 2018
Convergents of continued fractions: 7/4, 16/9, 23/13, 39/22, 257/145, 296/167, 8545/4821, ... - R. J. Mathar, Jan 29 2025

Examples

			1.7724538509055160272981674833411451827975494561223871282138...
		

References

  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), p. 190.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.5.4, p. 33.
  • W. E. Mansell, Tables of Natural and Common Logarithms. Royal Society Mathematical Tables, Vol. 8, Cambridge Univ. Press, 1964, p. XVIII.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 43, page 413.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 40.

Crossrefs

Cf. decimal expansions of Gamma(1/k): A073005 (k=3), A068466 (k=4), A175380 (k=5), A175379 (k=6), A220086 (k=7), A203142 (k=8).

Programs

  • Magma
    R:= RealField(100); Sqrt(Pi(R));  // G. C. Greubel, Mar 10 2018
  • Maple
    evalf(sqrt(Pi),120); # Muniru A Asiru, Nov 11 2018
  • Mathematica
    RealDigits[N[Sqrt[Pi], 120]][[1]] (* Richard Chapling (r.chappers(AT)gmail.com), Jun 05 2008 *)
  • PARI
    default(realprecision, 20080); x=sqrt(Pi); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b002161.txt", n, " ", d)); \\ Harry J. Smith, May 01 2009
    

Formula

Equals (1/2) * Sum_{n>=0} ((-1)^n * (4*n+1) * (1/8)^(n+1) * (2^(n+1))^3 * Gamma(n+1/2)^3 / Gamma(n+1)^3). - Alexander R. Povolotsky, Mar 25 2013
Equals Integral_{x=0..1} 1/sqrt(-log(x)) dx. - Jean-François Alcover, Apr 29 2013
Equals Sum_{k>=0} (k+1/2)!/(k+2)!. - Amiram Eldar, Jun 19 2023
Equals Integral_{x=0..oo} exp(-x)/sqrt(x) dx. - Michal Paulovic, Sep 24 2023
Equals Integral_{x=0..oo} 4/(exp(x^2)*(2*x^2 + 1)^2) dx. - Kritsada Moomuang, Jun 05 2025

Extensions

More terms from Franklin T. Adams-Watters, Apr 07 2006

A255306 Decimal expansion of log(Gamma(1/8)).

Original entry on oeis.org

2, 0, 1, 9, 4, 1, 8, 3, 5, 7, 5, 5, 3, 7, 9, 6, 3, 4, 5, 3, 2, 0, 2, 9, 0, 5, 2, 1, 1, 6, 7, 0, 9, 9, 5, 8, 9, 9, 4, 8, 2, 8, 0, 9, 5, 2, 1, 3, 4, 4, 4, 9, 6, 0, 5, 1, 3, 1, 9, 6, 4, 8, 7, 2, 6, 7, 9, 3, 1, 4, 9, 5, 9, 2, 1, 0, 4, 8, 2, 4, 0, 5, 8, 2, 2, 2, 5, 9, 3, 1, 6, 5, 2, 6, 3, 4, 0, 0, 3, 0, 6, 4, 0, 0, 5
Offset: 1

Views

Author

Keywords

Examples

			2.0194183575537963453202905211670995899482809521344496...
		

Crossrefs

Cf. A203142 (Gamma(1/8)), A255188 (first generalized Stieltjes constant at 1/8, gamma_1(1/8)).
Cf. decimal expansions of log(Gamma(1/k)): A155968 (k=2), A256165 (k=3), A256166 (k=4), A256167 (k=5), A255888 (k=6), A256609 (k=7), A256610 (k=9), A256612 (k=10), A256611 (k=11), A256066 (k=12), A256614 (k=16), A256615 (k=24), A256616 (k=48).

Programs

  • Maple
    evalf(log(GAMMA(1/8)),100);
  • Mathematica
    RealDigits[Log[Gamma[1/8]],10,100][[1]]
  • PARI
    log(gamma(1/8))

A257955 Decimal expansion of Gamma(1/Pi).

Original entry on oeis.org

2, 8, 1, 1, 2, 9, 7, 5, 1, 4, 6, 7, 0, 8, 6, 1, 6, 4, 2, 1, 2, 2, 7, 9, 0, 8, 0, 3, 7, 1, 0, 4, 8, 1, 6, 9, 3, 5, 2, 8, 1, 6, 5, 5, 2, 2, 3, 2, 9, 1, 7, 6, 5, 6, 8, 2, 2, 8, 9, 6, 5, 9, 0, 5, 3, 9, 3, 8, 6, 1, 5, 4, 8, 8, 7, 0, 1, 9, 2, 0, 5, 6, 8, 5, 1, 8, 8, 4, 8, 7, 4, 2, 3, 1, 8, 9, 0, 9, 3, 6, 4, 2, 4
Offset: 1

Views

Author

Keywords

Comments

The reference gives an interesting product representation in terms of rational multiple of 1/Pi for Gamma(1/Pi).

Examples

			2.8112975146708616421227908037104816935281655223291765...
		

Crossrefs

Programs

  • Maple
    evalf(GAMMA(1/Pi), 117);
  • Mathematica
    RealDigits[Gamma[1/Pi], 10, 117][[1]]
  • PARI
    default(realprecision, 117); gamma(1/Pi)

A269545 Decimal expansion of Gamma(Pi).

Original entry on oeis.org

2, 2, 8, 8, 0, 3, 7, 7, 9, 5, 3, 4, 0, 0, 3, 2, 4, 1, 7, 9, 5, 9, 5, 8, 8, 9, 0, 9, 0, 6, 0, 2, 3, 3, 9, 2, 2, 8, 8, 9, 6, 8, 8, 1, 5, 3, 3, 5, 6, 2, 2, 2, 4, 4, 1, 1, 9, 9, 3, 8, 0, 7, 4, 5, 4, 7, 0, 4, 7, 1, 0, 0, 6, 6, 0, 8, 5, 0, 4, 2, 8, 2, 5, 0, 0, 7, 2, 5, 3, 0, 4, 4, 6, 7, 9, 2, 8, 4, 7, 4, 7, 9, 6
Offset: 1

Views

Author

Keywords

Examples

			2.2880377953400324179595889090602339228896881533562224...
		

Crossrefs

Programs

  • MATLAB
    format long; gamma(pi)
  • Maple
    evalf(GAMMA(Pi), 120);
  • Mathematica
    RealDigits[Gamma[Pi], 10, 120][[1]]
  • PARI
    default(realprecision, 120); gamma(Pi)
    

Formula

Equals Integral_{x >= 0} x^(Pi-1)/e^x dx (Euler integral of the second kind).

A269546 Decimal expansion of log(Gamma(Pi)).

Original entry on oeis.org

8, 2, 7, 6, 9, 4, 5, 9, 2, 3, 2, 3, 4, 3, 7, 1, 0, 1, 5, 2, 9, 5, 7, 8, 5, 5, 8, 4, 5, 2, 3, 5, 9, 9, 5, 1, 1, 5, 3, 5, 0, 1, 7, 3, 4, 1, 2, 0, 7, 3, 7, 3, 1, 6, 7, 9, 1, 3, 1, 9, 2, 2, 5, 8, 1, 7, 1, 9, 3, 5, 7, 7, 1, 9, 7, 6, 9, 1, 7, 1, 4, 1, 8, 3, 1, 5, 7, 5, 1, 6, 1, 8, 0, 5, 5, 1, 8, 7, 5, 3, 6, 0, 5
Offset: 0

Views

Author

Keywords

Comments

Gamma(x) is the Gamma function (Euler's integral of the second kind).

Examples

			0.8276945923234371015295785584523599511535017341207373...
		

Crossrefs

Programs

  • MATLAB
    format long; log(gamma(pi))
  • Maple
    evalf(lnGAMMA(Pi), 120);
  • Mathematica
    RealDigits[LogGamma[Pi], 10, 120][[1]]
  • PARI
    default(realprecision, 120); lngamma(Pi)
    

A269547 Decimal expansion of Psi(Pi).

Original entry on oeis.org

9, 7, 7, 2, 1, 3, 3, 0, 7, 9, 4, 2, 0, 0, 6, 7, 3, 3, 2, 9, 2, 0, 6, 9, 4, 8, 6, 4, 0, 6, 1, 8, 2, 3, 4, 3, 6, 4, 0, 8, 3, 4, 6, 0, 9, 9, 9, 4, 3, 2, 5, 6, 3, 8, 0, 0, 9, 5, 2, 3, 2, 8, 6, 5, 3, 1, 8, 1, 0, 5, 9, 2, 4, 7, 7, 7, 1, 4, 1, 3, 1, 7, 3, 0, 2, 0, 7, 5, 6, 5, 4, 3, 6, 2, 9, 2, 8, 7, 3, 4, 3, 5, 5
Offset: 0

Views

Author

Keywords

Comments

Psi(x) is the digamma function (logarithmic derivative of the Gamma function).

Examples

			0.9772133079420067332920694864061823436408346099943256...
		

Crossrefs

Programs

  • MATLAB
    format long; psi(pi)
  • Maple
    evalf(Psi(Pi), 120)
  • Mathematica
    RealDigits[PolyGamma[Pi], 10, 120][[1]]
  • PARI
    default(realprecision, 120); psi(Pi)
    

A269557 Decimal expansion of Gamma(log(2)).

Original entry on oeis.org

1, 3, 0, 9, 0, 4, 0, 9, 1, 1, 2, 8, 1, 4, 8, 1, 2, 6, 9, 8, 2, 4, 5, 3, 2, 5, 2, 1, 3, 9, 5, 9, 2, 9, 5, 7, 5, 6, 1, 2, 5, 8, 9, 0, 3, 1, 9, 1, 8, 1, 8, 9, 0, 0, 1, 0, 3, 8, 9, 8, 0, 0, 0, 7, 9, 0, 9, 0, 9, 3, 9, 7, 6, 3, 4, 5, 6, 3, 2, 7, 4, 7, 1, 6, 0, 9, 7, 4, 1, 2, 5, 0, 3, 0, 1, 0, 0, 4, 3, 5, 1, 0, 5
Offset: 1

Views

Author

Keywords

Comments

Gamma(x) is the Gamma function (Euler's integral of the second kind).

Examples

			1.3090409112814812698245325213959295756125890319181890...
		

Crossrefs

Programs

  • MATLAB
    format long; gamma(log(2))
  • Maple
    evalf(GAMMA(ln(2)), 120);
  • Mathematica
    RealDigits[Gamma[Log[2]], 10, 120][[1]]
  • PARI
    default(realprecision, 120); gamma(log(2))
    

A269558 Decimal expansion of log(Gamma(log(2))).

Original entry on oeis.org

2, 6, 9, 2, 9, 4, 7, 4, 0, 2, 8, 3, 1, 3, 1, 2, 4, 2, 9, 4, 9, 9, 1, 6, 5, 8, 3, 2, 1, 1, 7, 1, 2, 8, 2, 4, 8, 8, 8, 9, 0, 3, 5, 1, 0, 2, 1, 1, 1, 6, 6, 1, 1, 7, 2, 8, 7, 0, 6, 1, 3, 1, 8, 9, 6, 9, 4, 8, 4, 9, 8, 7, 1, 3, 5, 9, 1, 1, 6, 0, 3, 2, 8, 0, 6, 2, 1, 6, 1, 5, 3, 6, 0, 2, 4, 6, 3, 8, 0, 9, 3, 0, 5
Offset: 0

Views

Author

Keywords

Comments

Gamma(x) is the Gamma function (Euler's integral of the second kind).

Examples

			0.2692947402831312429499165832117128248889035102111661...
		

Crossrefs

Programs

  • MATLAB
    format long; log(gamma(log(2)))
  • Maple
    evalf(lnGAMMA(ln(2)), 120);
  • Mathematica
    RealDigits[LogGamma[Log[2]], 10, 120][[1]]
  • PARI
    default(realprecision, 120); lngamma(log(2))
    

A269559 Decimal expansion of Psi(log(2)), negated.

Original entry on oeis.org

1, 2, 3, 9, 5, 9, 7, 2, 7, 9, 6, 1, 7, 6, 1, 8, 5, 0, 8, 2, 4, 4, 1, 2, 7, 5, 5, 1, 6, 8, 6, 0, 8, 4, 2, 4, 5, 4, 3, 3, 2, 8, 9, 5, 2, 2, 6, 8, 7, 4, 2, 0, 8, 6, 6, 4, 6, 1, 6, 4, 8, 9, 8, 8, 8, 1, 9, 4, 0, 6, 3, 8, 9, 3, 3, 4, 5, 3, 5, 9, 0, 1, 5, 8, 7, 3, 2, 6, 0, 6, 9, 4, 5, 7, 3, 4, 8, 8, 2, 3, 8, 2, 0
Offset: 1

Views

Author

Keywords

Comments

Psi(x) is the digamma function (logarithmic derivative of the Gamma function).

Examples

			-1.2395972796176185082441275516860842454332895226874208...
		

Crossrefs

Programs

  • MATLAB
    format long; psi(log(2))
  • Maple
    evalf(Psi(ln(2)), 120);
  • Mathematica
    RealDigits[PolyGamma[Log[2]], 10, 120][[1]]
  • PARI
    default(realprecision, 120); psi(log(2))
    

A034977 Expansion of 1/(1-64*x)^(1/8), related to octo-factorial numbers A045755.

Original entry on oeis.org

1, 8, 288, 13056, 652800, 34467840, 1884241920, 105517547520, 6014500208640, 347504456499200, 20294260259553280, 1195516422562775040, 70933974405391319040, 4234212626044897198080, 254052757562693831884800, 15310912855778348268257280, 926310227774590070229565440
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 1 select 8^(n-1) else 8*(8*n-15)*Self(n-1)/(n-1): n in [1..40]]; // G. C. Greubel, Oct 21 2022
    
  • Mathematica
    CoefficientList[Series[1/(1-64x)^(1/8),{x,0,30}],x] (* Harvey P. Dale, May 20 2011 *)
  • SageMath
    [2^(6*n)*rising_factorial(1/8,n)/factorial(n) for n in range(40)] # G. C. Greubel, Oct 21 2022

Formula

a(n) = 8^n*A045755(n)/n!, n >= 1, where A045755(n) = (8*n-7)!^8 = Product_{j=1..n} (8*j-7).
G.f.: (1-64*x)^(-1/8).
D-finite with recurrence: n*a(n) = 8*(8*n-7)*a(n-1). - R. J. Mathar, Jan 28 2020
a(n) ~ 2^(6*n) * n^(-7/8) / Gamma(1/8). - Amiram Eldar, Aug 18 2025

Extensions

a(11) corrected by Harvey P. Dale, May 20 2011
Showing 1-10 of 15 results. Next