A016754
Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers.
Original entry on oeis.org
1, 9, 25, 49, 81, 121, 169, 225, 289, 361, 441, 529, 625, 729, 841, 961, 1089, 1225, 1369, 1521, 1681, 1849, 2025, 2209, 2401, 2601, 2809, 3025, 3249, 3481, 3721, 3969, 4225, 4489, 4761, 5041, 5329, 5625, 5929, 6241, 6561, 6889, 7225, 7569, 7921, 8281, 8649, 9025
Offset: 0
- L. Lorentzen and H. Waadeland, Continued Fractions with Applications, North-Holland 1992, p. 586.
- Paolo Xausa, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe).
- Jeremiah Bartz, Bruce Dearden, and Joel Iiams, Classes of Gap Balancing Numbers, arXiv:1810.07895 [math.NT], 2018.
- Bruce C. Berndt and Ken Ono, Ramanujan's unpublished manuscript on the partition and tau functions with proofs and commentary, Séminaire Lotharingien de Combinatoire, B42c (1999), 63 pp.
- John Elias, Illustration: 8-fold Square Progression of Ulam's Spiral.
- Milan Janjic, Two Enumerative Functions.
- Scientific American, Cover of the March 1964 issue.
- Amelia Carolina Sparavigna, Groupoids of OEIS A002378 and A016754 Numbers (oblong and odd square numbers), Politecnico di Torino (Italy, 2019).
- Leo Tavares, Illustration: Diamond Triangles.
- Leo Tavares, Illustration: Diamond Stars.
- Eric Weisstein's World of Mathematics, Moore Neighborhood.
- R. Yin, J. Mu, and T. Komatsu, The p-Frobenius Number for the Triple of the Generalized Star Numbers, Preprints 2024, 2024072280. See p. 2.
- Index entries for sequences related to centered polygonal numbers.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Cf.
A000290,
A000384,
A001263,
A001539,
A001844,
A003881,
A005408,
A006752,
A014105,
A016742,
A016802,
A016814,
A016826,
A016838,
A033996,
A046092,
A060300,
A138393,
A167661,
A167700.
-
a016754 n = a016754_list !! n
a016754_list = scanl (+) 1 $ tail a008590_list
-- Reinhard Zumkeller, Apr 02 2012
-
[n^2: n in [1..100 by 2]]; // Vincenzo Librandi, Jan 03 2017
-
Range[1, 100, 2]^2 (* Paolo Xausa, Feb 13 2025 *)
-
A016754(n):=(n+n+1)^2$
makelist(A016754(n),n,0,20); /* Martin Ettl, Nov 12 2012 */
-
A016754(n)=(n<<1+1)^2 \\ Charles R Greathouse IV, Jun 16 2011, corrected and edited by M. F. Hasler, Apr 11 2023
-
def A016754(n): return ((n<<1)|1)**2 # Chai Wah Wu, Jul 06 2023
A004767
a(n) = 4*n + 3.
Original entry on oeis.org
3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63, 67, 71, 75, 79, 83, 87, 91, 95, 99, 103, 107, 111, 115, 119, 123, 127, 131, 135, 139, 143, 147, 151, 155, 159, 163, 167, 171, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223
Offset: 0
G.f. = 3 + 7*x + 11*x^2 + 15*x^3 + 19*x^4 + 23*x^5 + 27*x^6 + 31*x^7 + ...
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 85.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999. See Theorem 8.1 on page 240.
- Ivan Panchenko, Table of n, a(n) for n = 0..200
- Guo-Niu Han, Enumeration of Standard Puzzles
- Guo-Niu Han, Enumeration of Standard Puzzles [Cached copy]
- Stere Ianus, Mihai Visinescu and Gabriel-Eduard Vilcu, Hidden symmetries and Killing tensors on curved spaces, arXiv:0811.3478 [math-ph], 2008. - _Jonathan Vos Post_, Nov 24 2008
- Tanya Khovanova, Recursive Sequences
- Juan F. Pulido, José L. Ramírez, and Andrés R. Vindas-Meléndez, Generating Trees and Fibonacci Polyominoes, arXiv:2411.17812 [math.CO], 2024. See p. 8.
- William A. Stein, Dimensions of the spaces S_k(Gamma_0(N))
- William A. Stein, The modular forms database
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Cf.
A004773,
A005408,
A008545 (partial products),
A008586,
A014105,
A016813,
A016825,
A017137,
A017629,
A022544,
A084849,
A181049,
A238476,
A239126.
-
a004767 = (+ 3) . (* 4)
a004767_list = [3, 7 ..] -- Reinhard Zumkeller, Oct 03 2012
-
[4*n+3: n in [0..50]]; // Wesley Ivan Hurt, Jul 09 2014
-
seq( 3+4*n, n=0..100 );
-
4 Range[50] - 1 (* Wesley Ivan Hurt, Jul 09 2014 *)
-
a(n)=4*n+3 \\ Charles R Greathouse IV, Jul 28 2015
-
Vec((3+x)/(1-x)^2 + O(x^200)) \\ Altug Alkan, Jan 15 2016
-
for n in range(0,50): print(4*n+3, end=', ') # Stefano Spezia, Dec 12 2018
-
[4*n+3 for n in range(50)] # G. C. Greubel, Dec 09 2018
-
(0 to 59).map(4 * + 3) // _Alonso del Arte, Dec 12 2018
A016742
Even squares: a(n) = (2*n)^2.
Original entry on oeis.org
0, 4, 16, 36, 64, 100, 144, 196, 256, 324, 400, 484, 576, 676, 784, 900, 1024, 1156, 1296, 1444, 1600, 1764, 1936, 2116, 2304, 2500, 2704, 2916, 3136, 3364, 3600, 3844, 4096, 4356, 4624, 4900, 5184, 5476, 5776, 6084, 6400, 6724, 7056, 7396, 7744, 8100, 8464
Offset: 0
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.
- Seberry, Jennifer and Yamada, Mieko; Hadamard matrices, sequences and block designs, in Dinitz and Stinson, eds., Contemporary design theory, pp. 431-560, Wiley-Intersci. Ser. Discrete Math. Optim., Wiley, New York, 1992.
- W. D. Wallis, Anne Penfold Street and Jennifer Seberry Wallis, Combinatorics: Room squares, sum-free sets, Hadamard matrices, Lecture Notes in Mathematics, Vol. 292, Springer-Verlag, Berlin-New York, 1972. iv+508 pp.
- Vincenzo Librandi, Table of n, a(n) for n = 0..900
- R. P. Boas and N. J. A. Sloane, Correspondence, 1974.
- Leo Tavares, Illustration: X Squares
- Various, Electron Configuration (Discussion in Physics Forums).
- Eric Weisstein's World of Mathematics, Graph Cycle.
- Eric Weisstein's World of Mathematics, King Graph.
- Eric Weisstein's World of Mathematics, Molecular Topological Index.
- Wikipedia, Aufbau principle.
- Index entries for sequences related to Hadamard matrices
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Cf.
A000290,
A001105,
A001539,
A016754,
A016802,
A016814,
A016826,
A016838,
A007742,
A033991,
A245058.
-
List([0..100], n -> (2*n)^2); # Muniru A Asiru, Jan 28 2018
-
a016742 = (* 4) . (^ 2)
a016742_list = 0 : map (subtract 4) (zipWith (+) a016742_list [8, 16 ..])
-- Reinhard Zumkeller, Jun 28 2015, Apr 20 2015
-
[(2*n)^2: n in [0..50]]; // Vincenzo Librandi, Apr 26 2011
-
seq((2*n)^2, n=0..100); # Muniru A Asiru, Jan 28 2018
-
Table[(2n)^2, {n, 0, 46}] (* Alonso del Arte, Apr 26 2011 *)
-
makelist((2*n)^2,n,0,20); /* Martin Ettl, Jan 22 2013 */
-
a(n)=4*n^2 \\ Charles R Greathouse IV, Jul 28 2015
More terms from Sabir Abdus-Samee (sabdulsamee(AT)prepaidlegal.com), Mar 13 2006
A016814
a(n) = (4*n + 1)^2.
Original entry on oeis.org
1, 25, 81, 169, 289, 441, 625, 841, 1089, 1369, 1681, 2025, 2401, 2809, 3249, 3721, 4225, 4761, 5329, 5929, 6561, 7225, 7921, 8649, 9409, 10201, 11025, 11881, 12769, 13689, 14641, 15625, 16641, 17689, 18769, 19881, 21025, 22201, 23409, 24649, 25921, 27225, 28561, 29929
Offset: 0
Sequences of the form (m*n+1)^2:
A000012 (m=0),
A000290 (m=1),
A016754 (m=2),
A016778 (m-3), this sequence (m=4),
A016862 (m=5),
A016922 (m=6),
A016994 (m=7),
A017078 (m=8),
A017174 (m=9),
A017282 (m=10),
A017402 (m=11),
A017534 (m=12),
A134934 (m=14).
-
[(4*n+1)^2: n in [0..40]]; // G. C. Greubel, Dec 28 2022
-
A016814:=n->(4*n+1)^2; seq(A016814(k), k=0..100); # Wesley Ivan Hurt, Nov 02 2013
-
(4*Range[0,40] +1)^2 (* or *) LinearRecurrence[{3,-3,1}, {1,25,81}, 40] (* Harvey P. Dale, Nov 20 2012 *)
Accumulate[32Range[0, 47] - 8] + 9 (* Alonso del Arte, Aug 19 2017 *)
-
a(n)=(4*n+1)^2 \\ Charles R Greathouse IV, Oct 07 2015
-
[(4*n+1)^2 for n in range(41)] # G. C. Greubel, Dec 28 2022
A016802
a(n) = (4*n)^2.
Original entry on oeis.org
0, 16, 64, 144, 256, 400, 576, 784, 1024, 1296, 1600, 1936, 2304, 2704, 3136, 3600, 4096, 4624, 5184, 5776, 6400, 7056, 7744, 8464, 9216, 10000, 10816, 11664, 12544, 13456, 14400, 15376, 16384, 17424, 18496, 19600, 20736, 21904, 23104, 24336, 25600, 26896, 28224
Offset: 0
A130861
a(n) = (n-1)*(2*n+5).
Original entry on oeis.org
0, 9, 22, 39, 60, 85, 114, 147, 184, 225, 270, 319, 372, 429, 490, 555, 624, 697, 774, 855, 940, 1029, 1122, 1219, 1320, 1425, 1534, 1647, 1764, 1885, 2010, 2139, 2272, 2409, 2550, 2695, 2844, 2997, 3154, 3315, 3480, 3649, 3822, 3999, 4180, 4365
Offset: 1
-
Table[(n-1)(2n+5),{n,50}] (* or *) LinearRecurrence[{3,-3,1},{0,9,22},50] (* Harvey P. Dale, Oct 02 2015 *)
-
a(n)=(n-1)*(2*n+5) \\ Charles R Greathouse IV, Sep 24 2015
A016826
a(n) = (4n + 2)^2.
Original entry on oeis.org
4, 36, 100, 196, 324, 484, 676, 900, 1156, 1444, 1764, 2116, 2500, 2916, 3364, 3844, 4356, 4900, 5476, 6084, 6724, 7396, 8100, 8836, 9604, 10404, 11236, 12100, 12996, 13924, 14884, 15876, 16900, 17956
Offset: 0
-
A016826:=n->(4*n + 2)^2; seq(A016826(n), n=0..40); # Wesley Ivan Hurt, Feb 24 2014
-
(4*Range[0,40]+2)^2 (* or *) LinearRecurrence[{3,-3,1},{4,36,100},40] (* Harvey P. Dale, Nov 24 2011 *)
-
a(n)=(4*n+2)^2 \\ Charles R Greathouse IV, Oct 07 2015
A017138
a(n) = (8*n+6)^2.
Original entry on oeis.org
36, 196, 484, 900, 1444, 2116, 2916, 3844, 4900, 6084, 7396, 8836, 10404, 12100, 13924, 15876, 17956, 20164, 22500, 24964, 27556, 30276, 33124, 36100, 39204, 42436, 45796, 49284, 52900, 56644, 60516, 64516, 68644, 72900, 77284, 81796, 86436, 91204, 96100, 101124
Offset: 0
A016848
a(n) = (4*n+3)^12.
Original entry on oeis.org
531441, 13841287201, 3138428376721, 129746337890625, 2213314919066161, 21914624432020321, 150094635296999121, 787662783788549761, 3379220508056640625, 12381557655576425121, 39959630797262576401
Offset: 0
- David A. Corneth, Table of n, a(n) for n = 0..9999
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
Cf.
A004767,
A016838,
A016839,
A016840,
A016841,
A016842,
A016843,
A016844,
A016845,
A016846,
A016847.
A241747
Triangle read by rows: T(n,k) = (4*n+3)*(4*k+3).
Original entry on oeis.org
9, 21, 49, 33, 77, 121, 45, 105, 165, 225, 57, 133, 209, 285, 361, 69, 161, 253, 345, 437, 529, 81, 189, 297, 405, 513, 621, 729, 93, 217, 341, 465, 589, 713, 837, 961, 105, 245, 385, 525, 665, 805, 945, 1085, 1225, 117, 273, 429, 585, 741, 897, 1053, 1209, 1365, 1521
Offset: 0
Triangle begins:
n\k | 0 1 2 3 4 5 6 7 8 9
----|--------------------------------------------------------
0 | 9;
1 | 21, 49;
2 | 33, 77, 121;
3 | 45, 105, 165, 225;
4 | 57, 133, 209, 285, 361;
5 | 69, 161, 253, 345, 437, 529;
6 | 81, 189, 297, 405, 513, 621, 729;
7 | 93, 217, 341, 465, 589, 713, 837, 961;
8 | 105, 245, 385, 525, 665, 805, 945, 1085, 1225;
9 | 117, 273, 429, 585, 741, 897, 1053, 1209, 1365, 1521;
.....
-
[(4*n+3)*(4*k+3): k in [0..n], n in [0..15]]; /* or, as triangle: */ [[(4*n+3)*(4*k+3): k in [0..n]]: n in [0..10]];
-
t[n_, k_] := (4 n + 3) (4 k + 3); Table[t[n, k], {n, 0, 10}, {k, n}] // Flatten
Showing 1-10 of 12 results.
Comments