cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 310 results. Next

A253707 Numbers M(n) which are the number of terms in the sums of consecutive cubed integers equaling a squared integer, b^3 + (b+1)^3 + ... + (b+M-1)^3 = c^2, for a first term b(n) being an odd squared integer (A016754).

Original entry on oeis.org

17, 98, 291, 644, 1205, 2022, 3143, 4616, 6489, 8810, 11627, 14988, 18941, 23534, 28815, 34832, 41633, 49266, 57779, 67220, 77637, 89078, 101591, 115224, 130025, 146042, 163323, 181916, 201869, 223230, 246047, 270368, 296241, 323714, 352835, 383652, 416213
Offset: 1

Views

Author

Vladimir Pletser, Jan 09 2015

Keywords

Comments

Numbers M(n) such that b^3 + (b+1)^3 + ... + (b+M-1)^3 = c^2 has nontrivial solutions over the integers for b(n) being an odd squared integer (A016754).
To every odd squared integer b corresponds a sum of a consecutive cubed integers starting at b having at least one nontrivial solution. For n>=1, b(n)= (2n+1)^2 (A016754), M(n) = (sqrt(b)-1) (2b-1)/2 = n(8n(n+1)+1) (this sequence), and c(n)= (b-1)(4b^2-1)/8 = (n (n+1)/2)(4(2n+1)^4-1) (A253708).
The trivial solutions with M < 1 and b < 2 are not considered here.

Examples

			For n=1, b(n)=9, M(n)=17, c(n)=323 (see File Triplets link).
		

Crossrefs

Programs

  • Magma
    [n*(8*n*(n+1)+1): n in [1..40]]; // Vincenzo Librandi, Feb 19 2015
  • Maple
    restart: for n from 1 to 50000 do a:= n*(8*n*(n+1)+1): print (a); end do:
  • Mathematica
    f[n_] := n*(8 n (n + 1) + 1); Array[f, 52] (* Michael De Vlieger, Jan 10 2015 *)
    LinearRecurrence[{4,-6,4,-1},{17,98,291,644},40] (* Harvey P. Dale, Jul 31 2018 *)
  • PARI
    Vec(x*(x^2+30*x+17)/(x-1)^4 + O(x^100)) \\ Colin Barker, Jan 10 2015
    

Formula

a(n) = n(8n(n+1)+1).
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Colin Barker, Jan 10 2015
G.f.: x*(x^2+30*x+17) / (x-1)^4. - Colin Barker, Jan 10 2015

A253673 Indices of centered triangular numbers (A005448) that are also centered octagonal numbers (A016754).

Original entry on oeis.org

1, 16, 65, 1520, 6321, 148896, 619345, 14590240, 60689441, 1429694576, 5946945825, 140095478160, 582740001361, 13727927165056, 57102573187505, 1345196766697280, 5595469432374081, 131815555209168336, 548298901799472385, 12916579213731799600
Offset: 1

Views

Author

Colin Barker, Jan 08 2015

Keywords

Comments

Also positive integers x in the solutions to 3*x^2 - 8*y^2 - 3*x + 8*y = 0, the corresponding values of y being A253674.
Also indices of centered square numbers (A001844) that are also octagonal numbers (A000567). - Colin Barker, Feb 10 2015

Examples

			16 is in the sequence because the 16th centered triangular number is 361, which is also the 10th centered octagonal number.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,98,-98,-1,1},{1,16,65,1520,6321},20] (* Harvey P. Dale, Aug 07 2023 *)
  • PARI
    Vec(x*(3*x-1)*(5*x^2+18*x+1)/((x-1)*(x^2-10*x+1)*(x^2+10*x+1)) + O(x^100))

Formula

a(n) = a(n-1)+98*a(n-2)-98*a(n-3)-a(n-4)+a(n-5).
G.f.: x*(3*x-1)*(5*x^2+18*x+1) / ((x-1)*(x^2-10*x+1)*(x^2+10*x+1)).

A253708 Numbers c(n) whose squares are equal to the sums of consecutive cubed integers b^3 + (b+1)^3 + ... + (b+M-1)^3 = c^2, for a first term b(n) being an odd squared integer (A016754).

Original entry on oeis.org

323, 7497, 57618, 262430, 878445, 2399103, 5669972, 12026988, 23457735, 42785765, 73877958, 121874922, 193444433, 297057915, 443289960, 645140888, 918382347, 1281925953, 1758214970, 2373639030, 3158971893, 4149832247, 5387167548, 6917760900, 8794760975
Offset: 1

Views

Author

Vladimir Pletser, Jan 09 2015

Keywords

Comments

Numbers c(n) such that b^3 + (b+1)^3 + ... + (b+M-1)^3 = c^2 has nontrivial solutions over the integers for b being an odd squared integer (A016754).
To every odd squared integer b corresponds a sum of M consecutive cubed integers starting at b^3 equaling a squared integer and having at least one nontrivial solution. For n>=1, b(n) = (2n+1)^2 (A016754), M(n) = (sqrt(b)-1)(2b-1)/2 = n(8n(n+1)+1) (A253707), and c(n)= (b-1)(4b^2-1)/8 = (n(n+1)/2)(4(2n+1)^4-1) (this sequence).
The trivial solutions with M < 1 and b < 2 are not considered here.

Examples

			For n=1, b(n)=9, M(n)=17, a(n)=323.
See "File Triplets (M,b,c) for a=(2n+1)^2" link.
		

Crossrefs

Programs

  • Magma
    [(n*(n+1)/2)*(4*(2*n+1)^4-1): n in [1..30]]; // Vincenzo Librandi, Feb 19 2015
  • Maple
    restart: for n from 1 to 50000 do a:= (n*(n+1)/2)(4*(2*n+1)^4-1): print (a); end do:
  • Mathematica
    f[n_] := (n (n + 1)/2) (4 (2 n + 1)^4 - 1); Array[f, 33] (* Michael De Vlieger, Jan 10 2015 *)
  • PARI
    Vec(-x*(323*x^4+5236*x^3+11922*x^2+5236*x+323)/(x-1)^7 + O(x^100)) \\ Colin Barker, Jan 14 2015
    

Formula

a(n) = (n(n+1)/2)(4(2n+1)^4-1).
G.f.: -x*(323*x^4+5236*x^3+11922*x^2+5236*x+323) / (x-1)^7. - Colin Barker, Jan 14 2015

A253709 Integer squares c^2 that are equal to the sums of M (A253707) consecutive cubed integers equaling a squared integer, b^3 + (b+1)^3 + ... + (b+M-1)^3 = c^2, for a first term b(n) being an odd squared integer (A016754).

Original entry on oeis.org

104329, 56205009, 3319833924, 68869504900, 771665618025, 5755695204609, 32148582480784, 144648440352144, 550265331330225, 1830621686635225, 5457952678249764, 14853496612506084, 37420748658691489, 88243404864147225, 196505988636801600, 416206765369428544, 843426135281228409, 1643334148974958209, 3091319880732100900, 5634162244739340900
Offset: 1

Views

Author

Vladimir Pletser, Jan 09 2015

Keywords

Comments

Numbers a(n)=c^2 such that b^3 + (b+1)^3 + ... + (b+M-1)^3 = c^2 has nontrivial solutions over the integers for b being an odd squared integer (A016754) and M (A253707).
To every odd squared integer b (A016754) corresponds a sum of M (A253707) consecutive cubed integers starting at b^3 having at least one nontrivial solution. For n>=1, b(n)= (2n+1)^2 (A016754), M(n) = (sqrt(b)-1)(2b-1)/2 = n(8n(n+1)+1) (A253707), c(n)= (b-1)(4b^2-1)/8 = (n(n+1)/2)(4(2n+1)^4-1) (A253708) and a(n)=c(n)^2 (this sequence).
The trivial solutions with M < 1 and b < 2 are not considered here.

Examples

			For n=1, b(1)=9, M(1)=17, c(1)=323, a(1)= 104329 (see File File Triplets (M,b,c) for a=(2n+1)^2 link).
		

Crossrefs

Programs

  • Magma
    [((n*(n+1)/2)*(4*(2*n+1)^4-1))^2: n in [1..20]]; // Vincenzo Librandi, Jan 15 2015
  • Maple
    restart: for n from 1 to 50000 do a:=((n*(n+1)/2)(4*(2*n+1)^4-1))^2: print (a); end do:
  • Mathematica
    f[n_] := ((n (n + 1)/2) (4 (2 n + 1)^4 - 1))^2; Array[f, 20] (* Michael De Vlieger, Jan 10 2015 *)
  • PARI
    Vec(-x*(104329*x^10 +54848732*x^9 +2597306469*x^8 +30065816496*x^7 +119309063058*x^6 +186443360232*x^5 +119309063058*x^4 +30065816496*x^3 +2597306469*x^2 +54848732*x +104329) / (x -1)^13 + O(x^100)) \\ Colin Barker, Jan 10 2015
    

Formula

a(n) = ((n(n+1)/2)(4(2n+1)^4-1))^2.
G.f.: -x*(104329*x^10 +54848732*x^9 +2597306469*x^8 +30065816496*x^7 +119309063058*x^6 +186443360232*x^5 +119309063058*x^4 +30065816496*x^3 +2597306469*x^2 +54848732*x +104329) / (x -1)^13. - Colin Barker, Jan 10 2015

A253410 Indices of centered pentagonal numbers (A005891) which are also centered octagonal numbers (A016754).

Original entry on oeis.org

1, 96, 817, 137712, 1177393, 198579888, 1697799169, 286352060064, 2448225223585, 412919472031680, 3530339074609681, 595429592317621776, 5090746497361935697, 858609059202538568592, 7340852918856836664673, 1238113667940468298287168, 10585504818245061108522049
Offset: 1

Views

Author

Colin Barker, Dec 31 2014

Keywords

Comments

Also positive integers x in the solutions to 5*x^2 - 8*y^2 - 5*x + 8*y = 0, the corresponding values of y being A253411.

Examples

			96 is in the sequence because the 96th centered pentagonal number is 22801, which is also the 76th centered octagonal number.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,1442,-1442,-1,1},{1,96,817,137712,1177393},20] (* Harvey P. Dale, Jul 12 2021 *)
  • PARI
    Vec(x*(95*x^3+721*x^2-95*x-1)/((x-1)*(x^2-38*x+1)*(x^2+38*x+1)) + O(x^100))

Formula

a(n) = a(n-1) + 1442*a(n-2) - 1442*a(n-3) - a(n-4) + a(n-5).
G.f.: x*(95*x^3 + 721*x^2 - 95*x - 1) / ((x-1)*(x^2 - 38*x + 1)*(x^2 + 38*x + 1)).

A253826 Indices of centered octagonal numbers (A016754) which are also triangular numbers (A000217).

Original entry on oeis.org

1, 18, 595, 20196, 686053, 23305590, 791703991, 26894630088, 913625718985, 31036379815386, 1054323288004123, 35815955412324780, 1216688160731038381, 41331581509442980158, 1404057083160330286975, 47696609245941786776976, 1620280657278860420130193
Offset: 1

Views

Author

Colin Barker, Jan 16 2015

Keywords

Comments

Also positive integers y in the solutions to x^2 - 8*y^2 + x + 8*y - 2 = 0, the corresponding values of x being A008843.
Also the indices of centered octagonal numbers (A016754) which are also hexagonal numbers (A000384). Also positive numbers y in the solutions to 4x^2-8y^2-2x+8y-2=0. - Colin Barker, Jan 25 2015

Examples

			18 is in the sequence because the 18th centered octagonal number is 1225, which is also the 49th triangular number.
18 is in the sequence because the 18th centered octagonal number 1225 is also the 25th hexagonal number. - _Colin Barker_, Jan 25 2015
		

Crossrefs

Programs

  • PARI
    Vec(x*(17*x-1)/((x-1)*(x^2-34*x+1)) + O(x^100))

Formula

a(n) = 35*a(n-1)-35*a(n-2)+a(n-3).
G.f.: x*(17*x-1) / ((x-1)*(x^2-34*x+1)).
a(n) = sqrt((-2-(17-12*sqrt(2))^n-(17+12*sqrt(2))^n)*(2-(17-12*sqrt(2))^(1+n)-(17+12*sqrt(2))^(1+n)))/(8*sqrt(2)). - Gerry Martens, Jun 04 2015

A248205 Indices of centered octagonal numbers (A016754) that are also pentagonal numbers (A000326).

Original entry on oeis.org

1, 50, 4851, 475300, 46574501, 4563825750, 447208348951, 43821854371400, 4294094520048201, 420777441110352250, 41231895134294472251, 4040304945719747928300, 395908652785401002501101, 38795007668023578497179550, 3801514842813525291721094751
Offset: 1

Views

Author

Colin Barker, Jan 11 2015

Keywords

Comments

Positive integers y in the solutions to 3*x^2 - 8*y^2 - x + 8*y - 2 = 0, the corresponding values of x being A046172.

Examples

			50 is in the sequence because the 50th centered octagonal number is 9801, which is also the 81st pentagonal number.
		

Crossrefs

Programs

  • Magma
    I:=[1,50,4851]; [n le 3 select I[n] else 99*Self(n-1)-99*Self(n-2)+Self(n-3): n in [1..20]]; // Vincenzo Librandi, Jun 13 2015
  • Mathematica
    LinearRecurrence[{99, -99, 1}, {1, 50, 4851}, 20] (* Vincenzo Librandi, Jun 13 2015 *)
  • PARI
    Vec(x*(49*x-1)/((x-1)*(x^2-98*x+1)) + O(x^100))
    

Formula

a(n) = 99*a(n-1) - 99*a(n-2) + a(n-3).
G.f.: x*(49*x-1) / ((x-1)*(x^2 - 98*x + 1)).
a(n) = (1/2+1/48*(49+20*sqrt(6))^(-n)*(-12-5*sqrt(6)+(-12+5*sqrt(6))*(49+20*sqrt(6))^(2*n))). - Colin Barker, Mar 03 2016

A253411 Indices of centered octagonal numbers (A016754) which are also centered pentagonal numbers (A005891).

Original entry on oeis.org

1, 76, 646, 108871, 930811, 156991186, 1342228096, 226381180621, 1935491982901, 326441505463576, 2790978097114426, 470728424497295251, 4024588480547018671, 678790061683594287646, 5803453797970703808436, 978814798219318465489561, 8368576352085274344745321
Offset: 1

Views

Author

Colin Barker, Dec 31 2014

Keywords

Comments

Also positive integers y in the solutions to 5*x^2 - 8*y^2 - 5*x + 8*y = 0, the corresponding values of x being A253410.

Examples

			76 is in the sequence because the 76th centered octagonal number is 22801, which is also the 96th centered pentagonal number.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,1442,-1442,-1,1},{1,76,646,108871,930811},20] (* Harvey P. Dale, Feb 04 2016 *)
  • PARI
    Vec(-x*(x^4+75*x^3-872*x^2+75*x+1)/((x-1)*(x^2-38*x+1)*(x^2+38*x+1)) + O(x^100))

Formula

a(n) = a(n-1) + 1442*a(n-2) - 1442*a(n-3) - a(n-4) + a(n-5).
G.f.: -x*(x^4 + 75*x^3 - 872*x^2 + 75*x + 1) / ((x-1)*(x^2 - 38*x + 1)*(x^2 + 38*x + 1)).

A253446 Indices of centered heptagonal numbers (A069099) which are also centered octagonal numbers (A016754).

Original entry on oeis.org

1, 16, 465, 13920, 417121, 12499696, 374573745, 11224712640, 336366805441, 10079779450576, 302057016711825, 9051630721904160, 271246864640412961, 8128354308490484656, 243579382390074126705, 7299253117393733316480, 218734014139421925367681
Offset: 1

Views

Author

Colin Barker, Jan 01 2015

Keywords

Comments

Also positive integers x in the solutions to 7*x^2 - 8*y^2 - 7*x + 8*y = 0, the corresponding values of y being A253447.

Examples

			16 is in the sequence because the 16th centered heptagonal number is 841, which is also the 15th centered octagonal number.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{31,-31,1},{1,16,465},20] (* Harvey P. Dale, Oct 04 2023 *)
  • PARI
    Vec(x*(15*x-1)/((x-1)*(x^2-30*x+1)) + O(x^100))

Formula

a(n) = 31*a(n-1)-31*a(n-2)+a(n-3).
G.f.: x*(15*x-1) / ((x-1)*(x^2-30*x+1)).
a(n) = sqrt((-2-(15-4*sqrt(14))^n-(15+4*sqrt(14))^n)*(2-(15-4*sqrt(14))^(1+n)-(15+4*sqrt(14))^(1+n)))/(4*sqrt(7)). - Gerry Martens, Jun 04 2015

A253447 Indices of centered octagonal numbers (A016754) which are also centered heptagonal numbers (A069099).

Original entry on oeis.org

1, 15, 435, 13021, 390181, 11692395, 350381655, 10499757241, 314642335561, 9428770309575, 282548466951675, 8467025238240661, 253728208680268141, 7603379235169803555, 227847648846413838495, 6827826086157245351281, 204606934935870946699921
Offset: 1

Views

Author

Colin Barker, Jan 01 2015

Keywords

Comments

Also positive integers y in the solutions to 7*x^2 - 8*y^2 - 7*x + 8*y = 0, the corresponding values of x being A253446.

Examples

			15 is in the sequence because the 15th centered octagonal number is 841, which is also the 16th centered heptagonal number.
		

Crossrefs

Programs

  • PARI
    Vec(-x*(x^2-16*x+1)/((x-1)*(x^2-30*x+1)) + O(x^100))

Formula

a(n) = 31*a(n-1)-31*a(n-2)+a(n-3).
G.f.: -x*(x^2-16*x+1) / ((x-1)*(x^2-30*x+1)).
a(n) = (8+(4+sqrt(14))*(15+4*sqrt(14))^(-n)-(-4+sqrt(14))*(15+4*sqrt(14))^n)/16. - Colin Barker, Mar 03 2016
Showing 1-10 of 310 results. Next