A253707 Numbers M(n) which are the number of terms in the sums of consecutive cubed integers equaling a squared integer, b^3 + (b+1)^3 + ... + (b+M-1)^3 = c^2, for a first term b(n) being an odd squared integer (A016754).
17, 98, 291, 644, 1205, 2022, 3143, 4616, 6489, 8810, 11627, 14988, 18941, 23534, 28815, 34832, 41633, 49266, 57779, 67220, 77637, 89078, 101591, 115224, 130025, 146042, 163323, 181916, 201869, 223230, 246047, 270368, 296241, 323714, 352835, 383652, 416213
Offset: 1
Examples
For n=1, b(n)=9, M(n)=17, c(n)=323 (see File Triplets link).
Links
- Vladimir Pletser, Table of n, a(n) for n = 1..50000
- Vladimir Pletser, File Triplets (M,b,c) for a=(2n+1)^2
- Vladimir Pletser, Number of terms, first term and square root of sums of consecutive cubed integers equal to integer squares, Research Gate, 2015.
- Vladimir Pletser, General solutions of sums of consecutive cubed integers equal to squared integers, arXiv:1501.06098 [math.NT], 2015.
- R. J. Stroeker, On the sum of consecutive cubes being a perfect square, Compositio Mathematica, 97 no. 1-2 (1995), pp. 295-307.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[n*(8*n*(n+1)+1): n in [1..40]]; // Vincenzo Librandi, Feb 19 2015
-
Maple
restart: for n from 1 to 50000 do a:= n*(8*n*(n+1)+1): print (a); end do:
-
Mathematica
f[n_] := n*(8 n (n + 1) + 1); Array[f, 52] (* Michael De Vlieger, Jan 10 2015 *) LinearRecurrence[{4,-6,4,-1},{17,98,291,644},40] (* Harvey P. Dale, Jul 31 2018 *)
-
PARI
Vec(x*(x^2+30*x+17)/(x-1)^4 + O(x^100)) \\ Colin Barker, Jan 10 2015
Formula
a(n) = n(8n(n+1)+1).
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Colin Barker, Jan 10 2015
G.f.: x*(x^2+30*x+17) / (x-1)^4. - Colin Barker, Jan 10 2015
Comments