cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A036353 Square pentagonal numbers.

Original entry on oeis.org

0, 1, 9801, 94109401, 903638458801, 8676736387298001, 83314021887196947001, 799981229484128697805801, 7681419682192581869134354401, 73756990988431941623299373152801, 708214619789503821274338711878841001, 6800276705461824703444258688161258139001
Offset: 0

Views

Author

Jean-Francois Chariot (jeanfrancois.chariot(AT)afoc.alcatel.fr)

Keywords

Comments

Lim_{n -> oo} a(n)/a(n-1) = (sqrt(2) + sqrt(3))^8 = 4801 + 1960*sqrt(6). - Ant King, Nov 06 2011
Pentagonal numbers (A000326) which are also centered octagonal numbers (A016754). - Colin Barker, Jan 11 2015

Crossrefs

Programs

  • Mathematica
    Table[Floor[1/96 ( Sqrt[2] + Sqrt[3] ) ^ ( 8*n - 4 ) ] , {n, 0, 9}] (* Ant King, Nov 06 2011 *)
    LinearRecurrence[{9603,-9603,1},{0,1,9801,94109401},20] (* Harvey P. Dale, Apr 14 2019 *)
  • PARI
    for(n=0,10^9,g=(n*(3*n-1)/2); if(issquare(g),print(g)))
    
  • PARI
    concat(0, Vec(x*(1+198*x+x^2)/((1-x)*(1-9602*x+x^2)) + O(x^20))) \\ Colin Barker, Jun 24 2015

Formula

a(n) = 9602*a(n-1) - a(n-2) + 200; g.f.: x*(1+198*x+x^2)/((1-x)*(1-9602*x+x^2)). - Warut Roonguthai, Jan 05 2001
a(n+1) = 4801*a(n)+100+980*(24*a(n)^2+a(n))^(1/2). - Richard Choulet, Sep 21 2007
From Ant King, Nov 06 2011: (Start)
a(n) = floor(1/96*(sqrt(2) + sqrt(3))^(8*n-4)).
a(n) = 9603*a(n-1) - 9603*a(n-2) + a(n-3).
(End)

Extensions

More terms from Eric W. Weisstein

A046172 Indices of pentagonal numbers (A000326) that are also squares (A000290).

Original entry on oeis.org

1, 81, 7921, 776161, 76055841, 7452696241, 730288175761, 71560788528321, 7012226987599681, 687126683996240401, 67331402804643959601, 6597790348171111800481, 646516122717964312487521, 63351982236012331511976561, 6207847743006490523861215441
Offset: 1

Views

Author

Keywords

Comments

if P_x = y^2 is a pentagonal number that is also a square, the least both pentagonal and square number that is greater as P_x, is P_(49*x + 40*y - 8) = (60*x + 49*y - 10)^2 (in fact, P_(49*x + 40*y - 8) - (60*x + 49*y - 10)^2 = (3/2)*x^2 - (1/2)*x - y^2). - Richard Choulet, Apr 28 2009
a(n)*(3*a(n)-1)/2 = m^2 is equivalent to the Pell equation (6*a(n)-1)^2 - 6*(2*m)^2 = 1 or x(n)^2 - 6*y(n)^2 = 1. - Paul Weisenhorn, May 15 2009
As n increases, this sequence is approximately geometric with common ratio r = lim_{n -> oo} a(n)/a(n-1) = (sqrt(2) + sqrt(3))^4 = 49 + 20*sqrt(6). - Ant King, Nov 07 2011
Numbers k such that the k-th pentagonal number is equal to the sum of two consecutive triangular numbers. - Colin Barker, Dec 11 2014
Indices of pentagonal numbers (A000326) that are also centered octagonal numbers (A016754). - Colin Barker, Jan 11 2015

References

  • Muniru A. Asiru, All square chiliagonal numbers, International Journal of Mathematical Education in Science and Technology, Volume 47, 2016 - Issue 7; http://dx.doi.org/10.1080/0020739X.2016.1164346

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{99, -99, 1}, {1, 81, 7921}, 13] (* Ant King, Nov 07 2011 *)
    Table[Round[(1 + x^(2*n+1))^2 / (12*x^(2*n+1)) /. x->5+2*Sqrt@6],{n,0,99}] (* Federico Provvedi, Apr 24 2023 *)

Formula

a(n) = 98*a(n-1) - a(n-2) - 16; g.f.: x*(1 - 18*x + x^2)/((1-x)*(1 - 98*x + x^2)). - Warut Roonguthai Jan 05 2001 - Corrected by Colin Barker, Jan 11 2015
a(n+1) = 49*a(n) - 8 + 10*sqrt(8*(3*a(n)^2 - a(n))) with a(1) = 1. - Richard Choulet, Apr 28 2009
a(n) = 1/6+((5 + 2*sqrt(6))^(2*n+1)/12) + ((5 - 2*sqrt(6))^(2*n+1)/12) for n >= 0. - Richard Choulet, Apr 29 2009
From Paul Weisenhorn, May 15 2009: (Start)
x(n+2) = 98*x(n+1) - x(n) with x(1)=5, x(2)=485;
y(n+2) = 98*y(n+1) - y(n) with y(n)=A046173(n)*2;
m(n+2) = 98*m(n+1) - m(n) with m(n)=A046173(n);
a(n) = A072256(n)^2.
(End)
a(n) = b(n)*b(n), b(n) = 10*b(n-1)- b(n-2), b(1)=1, b(2)=9, b(n)=((5 + sqrt(24))^n - (5 - sqrt(24))^n)/(2*sqrt(24)). - Sture Sjöstedt, Sep 21 2009
From Ant King, Nov 07 2011: (Start)
a(n) = 99*a(n-1) - 99*a(n-2) + a(n-3).
a(n) = ceiling((1/12)*(sqrt(3) + sqrt(2))^(4*n-2)).
(End)
a(n) = (1 + x^(2n+1))^2 / (12*x^(2*n+1)), with x = 5 + 2*sqrt(6). - Federico Provvedi, Apr 24 2023
Showing 1-2 of 2 results.