A001079
a(n) = 10*a(n-1) - a(n-2); a(0) = 1, a(1) = 5.
Original entry on oeis.org
1, 5, 49, 485, 4801, 47525, 470449, 4656965, 46099201, 456335045, 4517251249, 44716177445, 442644523201, 4381729054565, 43374646022449, 429364731169925, 4250272665676801, 42073361925598085, 416483346590304049
Offset: 0
Pell equation: n = 0: 1^2 - 24*0^2 = +1, n = 1: 5^2 - 6*(1*2)^2 = 1, n = 2: 49^2 - 6*(2*10)^2 = +1. - _Wolfdieter Lang_, Jun 26 2013
G.f. = 1 + 5*x + 49*x^2 + 485*x^3 + 4801*x^4 + 47525*x^5 + 470449*x^6 + ...
- Bastida, Julio R. Quadratic properties of a linearly recurrent sequence. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 163-166, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561042 (81e:10009) - From N. J. A. Sloane, May 30 2012
- L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, p. 384.
- L. Euler, (E388) Vollstaendige Anleitung zur Algebra, Zweiter Theil, reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 1, p. 374.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- V. Thébault, Les Récréations Mathématiques. Gauthier-Villars, Paris, 1952, p. 281.
- T. D. Noe, Table of n, a(n) for n=0..200
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- John M. Campbell, An Integral Representation of Kekulé Numbers, and Double Integrals Related to Smarandache Sequences, arXiv preprint arXiv:1105.3399 [math.GM], 2011.
- Leonhard Euler, Vollstaendige Anleitung zur Algebra, Zweiter Teil.
- Leonhard Euler, De solutione problematum diophanteorum per numeros integros, par. 18.
- Tanya Khovanova, Recursive Sequences
- Robert Phillips, Polynomials of the form 1+4ke+4ke^2, 2008.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (10,-1).
- Index entries for sequences related to Chebyshev polynomials.
-
I:=[1,5]; [n le 2 select I[n] else 10*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 10 2016
-
A001079 := proc(n)
option remember;
if n <= 1 then
op(n+1,[1,5]) ;
else
10*procname(n-1)-procname(n-2) ;
end if;
end proc:
seq(A001079(n),n=0..20) ; # R. J. Mathar, Apr 30 2017
-
Table[(-1)^n Round[N[Cos[2 n ArcSin[Sqrt[3]]], 50]], {n, 0, 20}] (* Artur Jasinski, Oct 29 2008 *)
a[ n_] := ChebyshevT[n, 5]; (* Michael Somos, Aug 24 2014 *)
CoefficientList[Series[(1-5*x)/(1-10*x+x^2), {x, 0, 50}], x] (* G. C. Greubel, Dec 20 2017 *)
a[n_] := 3^n*Sum[(2/3)^k*Binomial[2*n, 2*k], {k,0,n}]; Flatten[Table[a[n], {n,0,18}]] (* Detlef Meya, May 21 2024 *)
-
{a(n) = subst(poltchebi(n), 'x, 5)}; /* Michael Somos, Sep 05 2006 */
-
{a(n) = real((5 + 2*quadgen(24))^n)}; /* Michael Somos, Sep 05 2006 */
-
{a(n) = n = abs(n); polsym(1 - 10*x + x^2, n)[n+1] / 2}; /* Michael Somos, Sep 05 2006 */
-
x='x+O('x^30); Vec((1-5*x)/(1-10*x+x^2)) \\ G. C. Greubel, Dec 20 2017
A046172
Indices of pentagonal numbers (A000326) that are also squares (A000290).
Original entry on oeis.org
1, 81, 7921, 776161, 76055841, 7452696241, 730288175761, 71560788528321, 7012226987599681, 687126683996240401, 67331402804643959601, 6597790348171111800481, 646516122717964312487521, 63351982236012331511976561, 6207847743006490523861215441
Offset: 1
- Muniru A. Asiru, All square chiliagonal numbers, International Journal of Mathematical Education in Science and Technology, Volume 47, 2016 - Issue 7; http://dx.doi.org/10.1080/0020739X.2016.1164346
- Colin Barker, Table of n, a(n) for n = 1..503
- Leonhard Euler, De solutione problematum diophanteorum per numeros integros, section 21.
- Giovanni Lucca, Integer Sequences and Circle Chains Inside a Circular Segment, Forum Geometricorum, Vol. 18 (2018), 47-55.
- W. Sierpiński, Sur les nombres pentagonaux, Bull. Soc. Roy. Sci. Liege 33 (1964) 513-517.
- Eric Weisstein's World of Mathematics, Pentagonal Square Number.
- Index entries for linear recurrences with constant coefficients, signature (99,-99,1).
-
LinearRecurrence[{99, -99, 1}, {1, 81, 7921}, 13] (* Ant King, Nov 07 2011 *)
Table[Round[(1 + x^(2*n+1))^2 / (12*x^(2*n+1)) /. x->5+2*Sqrt@6],{n,0,99}] (* Federico Provvedi, Apr 24 2023 *)
A046173
Indices of square numbers that are also pentagonal.
Original entry on oeis.org
1, 99, 9701, 950599, 93149001, 9127651499, 894416697901, 87643708742799, 8588189040096401, 841554882220704499, 82463790268588944501, 8080609891439495856599, 791817305570802005002201, 77590015336047156994359099, 7603029685627050583442189501
Offset: 1
G.f. = x + 99*x^2 + 9701*x^3 + 950599*x^4 + 93149001*x^5 + ...
99 is a term because 99^2 = 9801 = (1/2) * 81 * (3*81 - 1), so 9801 is the 99th square number, also the 81st pentagonal number, and the second pentagonal square number after 1. - _Bernard Schott_, Mar 10 2019
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 35.
- Colin Barker, Table of n, a(n) for n = 1..503
- M. A. Asiru, All square chiliagonal numbers, Int J Math Edu Sci Technol, 47:7(2016), 1123-1134.
- L. Euler, De solutione problematum diophanteorum per numeros integros, par. 21
- Tanya Khovanova, Recursive Sequences
- Eric Weisstein's World of Mathematics, Pentagonal Square Number
- Index entries for linear recurrences with constant coefficients, signature (98,-1).
Cf.
A036353 (pentagonal square numbers),
A046172 (indices of pentagonal numbers that are also square).
-
CoefficientList[Series[(1 + x)/(1 - 98* x + x^2), {x, 0, 30}], x] (* T. D. Noe, Aug 01 2011 *)
LinearRecurrence[{98, -1}, {1, 99}, 30] (* Harvey P. Dale, Jul 31 2017 *)
-
{a(n) = subst( poltchebi(n) - poltchebi(n-1), 'x, 49) / 48}; /* Michael Somos, Sep 05 2006 */
-
Vec(x*(x+1)/(x^2-98*x+1) + O(x^30)) \\ Colin Barker, Jun 23 2015
A342709
12-gonal (dodecagonal) square numbers.
Original entry on oeis.org
1, 64, 3025, 142129, 6677056, 313679521, 14736260449, 692290561600, 32522920134769, 1527884955772561, 71778070001175616, 3372041405099481409, 158414167969674450625, 7442093853169599697984, 349619996931001511354641, 16424697761903901433970161
Offset: 1
142129 = 169*(5*169-4) = 377^2, so 142129 is the 169th 12-gonal number and the 377th square, hence 142129 is a term.
-
with(combinat):
seq(fibonacci(4*n-2)^2, n=1..16);
-
Table[Fibonacci[4*n - 2]^2, {n, 1, 16}] (* Amiram Eldar, Mar 19 2021 *)
-
a(n) = fibonacci(4*n-2)^2; \\ Michel Marcus, Mar 21 2021
A248205
Indices of centered octagonal numbers (A016754) that are also pentagonal numbers (A000326).
Original entry on oeis.org
1, 50, 4851, 475300, 46574501, 4563825750, 447208348951, 43821854371400, 4294094520048201, 420777441110352250, 41231895134294472251, 4040304945719747928300, 395908652785401002501101, 38795007668023578497179550, 3801514842813525291721094751
Offset: 1
50 is in the sequence because the 50th centered octagonal number is 9801, which is also the 81st pentagonal number.
-
I:=[1,50,4851]; [n le 3 select I[n] else 99*Self(n-1)-99*Self(n-2)+Self(n-3): n in [1..20]]; // Vincenzo Librandi, Jun 13 2015
-
LinearRecurrence[{99, -99, 1}, {1, 50, 4851}, 20] (* Vincenzo Librandi, Jun 13 2015 *)
-
Vec(x*(49*x-1)/((x-1)*(x^2-98*x+1)) + O(x^100))
A277792
Squares that are also pentagonal pyramidal numbers.
Original entry on oeis.org
0, 1, 196, 2601, 15376, 60025, 181476, 461041, 1032256, 2099601, 3960100, 7027801, 11861136, 19193161, 29964676, 45360225, 66846976, 96216481, 135629316, 187662601, 255360400, 342287001, 452583076, 591024721, 763085376, 975000625, 1233835876, 1547556921, 1925103376, 2376465001, 2912760900
Offset: 0
a(2) = 196 because 196 = 14^2 is a perfect square and 196 = 7^2*(7 + 1)/2 is the 7th pentagonal pyramidal number.
- Daniel Mondot, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Pentagonal Pyramidal Number
- Eric Weisstein's World of Mathematics, Square Number
- Index to sequences related to polygonal numbers
- Index to sequences related to pyramidal numbers
- Index entries for two-way infinite sequences
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
-
[n^2*(2*n^2-1)^2: n in [0..30]]; // Vincenzo Librandi, Nov 01 2016
-
Table[n^2 (2 n^2 - 1)^2, {n, 0, 30}]
LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,1,196,2601,15376,60025,181476},40] (* Harvey P. Dale, Nov 01 2024 *)
A333641
11-gonal (or hendecagonal) square numbers.
Original entry on oeis.org
0, 1, 196, 29241, 1755625, 261468900, 38941102225, 2337990844401, 348201795147556, 51858411008887561, 3113535139359330841, 463705205422871375236, 69060571958250748760481, 4146338334574433921200225, 617522713934165528806340100, 91968930524758079223806760025
Offset: 1
1755625 is a term because 625*(9*625-7)/2 = 1325^2 = 1755625; that means that 1755625 is the 625th 11-gonal number and the square of 1325.
Cf.
A001110 (square triangulars),
A036353 (square pentagonals),
A046177 (square hexagonals),
A036354 (square heptagonals),
A036428 (square octagonals),
A036411 (square 9-gonals),
A188896 (only {0,1} are square 10-gonals), this sequence (square 11-gonals),
A342709 (square 12-gonals).
-
for k from 0 to 8000000 do
d:= k*(9*k-7)/2;
if issqr(d) then print(k,sqrt(d),d); else fi; od:
-
Last /@ Solve[(18*x - 7)^2 - 72*y^2 == 49 && x >= 0 && y >= 0 && y < 10^16, {x, y}, Integers] /. Rule -> (#2^2 &) (* Amiram Eldar, Mar 31 2020 *)
-
concat(0, Vec(-x*(1 + 195*x + 29045*x^2 + 394670*x^3 + 29045*x^4 + 195*x^5 + x^6)/(-1 + x + 1331714*x^3 - 1331714*x^4 - x^6 + x^7) + O(x^20))) \\ Jinyuan Wang, Mar 31 2020
A342300
Least nonnegative number greater than the previous number which is simultaneously an n-gonal and (n+1)-gonal number.
Original entry on oeis.org
0, 1, 3, 36, 9801, 40755, 121771, 297045, 631125, 1212751, 2158695, 3617601, 5773825, 8851275, 13117251, 18886285, 26523981, 36450855, 49146175, 65151801, 85076025, 109597411, 139468635, 175520325, 218664901, 269900415, 330314391, 401087665, 483498225, 578925051, 688851955, 814871421
Offset: 0
a(3) is the least triangular and square number > 3, which is 36: A001110(2).
a(4) is the least square and pentagonal number > 36, which is 9801: A036353(2).
-
a[n_] := Intersection[ Table[ PolygonalNumber[n, i], {i, 2, 10000}], Table[ PolygonalNumber[n + 1, i], {i, 2, 10000}]][[1]]; a[0] = 0; a[1] = 1; Array[a, 30, 0] (* Or *)
a[n_] := a[n] = 6a[n - 1] -15a[n - 2] +20a[n - 3] -15a[n - 4] +6a[n - 5] -a[n - 6]; a[0] = 0; a[1] = 1; a[2] = 3; a[3] = 36; a[4] = 9801; a[5] = 40755; a[6] = 121771; a[7] = 297045; a[8] = 631125; a[9] = 1212751; Array[a, 30, 0]
A378245
Numbers that are both k-gonal and (k+1)-gonal for some k >= 3.
Original entry on oeis.org
1, 36, 1225, 9801, 40755, 41616, 121771, 297045, 631125, 1212751, 1413721, 2158695, 3617601, 5773825, 8851275, 13117251, 18886285, 26523981, 36450855, 48024900, 49146175, 65151801, 85076025, 94109401, 109597411, 139468635, 175520325, 218664901, 269900415, 330314391
Offset: 1
a(2) = 36 is both the 8th triangular and the 6th square number.
a(3) = 1225 is both the 49th triangular and the 35th square number.
a(5) = 40755 is both the 165th pentagonal number and the 143th hexagonal number.
The subdiagonal of
A189216 is also a subsequence.
-
upto(limit) = my(terms=List(1)); for(k=3, oo, my(found=0); for(n=2, oo, my(a = (2*n - 1)^2, b = (4*n*(3*n - 5) + 6), c = (8*(n-1)^2 + 1), s = (a*k^2 - b*k + c), v = n * (n*k - k - 2*n + 4) / 2); if(issquare(s), my(t = sqrtint(s) + k - 3); if(t % (2*(k-1)) == 0, listput(terms, v); found += 1)); if(v >= limit, break)); if(found == 0, break)); Vec(vecsort(terms)); \\ Daniel Suteu, Dec 08 2024
Showing 1-9 of 9 results.
Comments