cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A033890 a(n) = Fibonacci(4*n + 2).

Original entry on oeis.org

1, 8, 55, 377, 2584, 17711, 121393, 832040, 5702887, 39088169, 267914296, 1836311903, 12586269025, 86267571272, 591286729879, 4052739537881, 27777890035288, 190392490709135, 1304969544928657, 8944394323791464, 61305790721611591, 420196140727489673
Offset: 0

Views

Author

Keywords

Comments

(x,y) = (a(n), a(n+1)) are solutions of (x+y)^2/(1+xy)=9, the other solutions are in A033888. - Floor van Lamoen, Dec 10 2001
This sequence consists of the odd-indexed terms of A001906 (whose terms are the values of x such that 5*x^2 + 4 is a square). The even-indexed terms of A001906 are in A033888. Limit_{n->infinity} a(n)/a(n-1) = phi^4 = (7 + 3*sqrt(5))/2. - Gregory V. Richardson, Oct 13 2002
General recurrence is a(n) = (a(1)-1)*a(n-1) - a(n-2), a(1) >= 4, lim_{n->infinity} a(n) = x*(k*x+1)^n, k = a(1) - 3, x = (1 + sqrt((a(1)+1)/(a(1)-3)))/2. Examples in OEIS: a(1)=4 gives A002878. a(1)=5 gives A001834. a(1)=6 gives A030221. a(1)=7 gives A002315. a(1)=8 gives A033890. a(1)=9 gives A057080. a(1)=10 gives A057081. - Ctibor O. Zizka, Sep 02 2008
Indices of square numbers which are also 12-gonal. - Sture Sjöstedt, Jun 01 2009
For positive n, a(n) equals the permanent of the (2n) X (2n) tridiagonal matrix with 3's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
If we let b(0) = 0 and, for n >= 1, b(n) = A033890(n-1), then the sequence b(n) will be F(4n-2) and the first difference is L(4n) or A056854. F(4n-2) is also the ratio of golden spiral length (rounded to the nearest integer) after n rotations. L(4n) is also the pitch length ratio. See illustration in links. - Kival Ngaokrajang, Nov 03 2013
The aerated sequence (b(n))n>=1 = [1, 0, 8, 0, 55, 0, 377, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -5, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047. - Peter Bala, Mar 22 2015
Solutions y of Pell equation x^2 - 5*y^2 = 4; corresponding x values are in A342710 (see A342709). - Bernard Schott, Mar 19 2021

Crossrefs

Programs

  • Magma
    [Fibonacci(4*n +2): n in [0..100]]; // Vincenzo Librandi, Apr 17 2011
  • Maple
    A033890 := proc(n)
        option remember;
        if n <= 1 then
            op(n+1,[1,8]);
        else
            7*procname(n-1)-procname(n-2) ;
        end if;
    end proc: # R. J. Mathar, Apr 30 2017
  • Mathematica
    Table[Fibonacci[4n + 2], {n, 0, 14}] (* Vladimir Joseph Stephan Orlovsky, Jul 21 2008 *)
    LinearRecurrence[{7, -1}, {1, 8}, 50] (* G. C. Greubel, Jul 13 2017 *)
    a[n_] := (GoldenRatio^(2 (1 + 2 n)) - GoldenRatio^(-2 (1 + 2 n)))/Sqrt[5]
    Table[a[n] // FullSimplify, {n, 0, 21}] (* Gerry Martens, Aug 20 2025 *)
  • PARI
    a(n)=fibonacci(4*n+2);
    

Formula

G.f.: (1+x)/(1-7*x+x^2).
a(n) = 7*a(n-1) - a(n-2), n > 1; a(0)=1, a(1)=8.
a(n) = S(n,7) + S(n-1,7) = S(2*n,sqrt(9) = 3), where S(n,x) = U(n,x/2) are Chebyshev's polynomials of the 2nd kind. Cf. A049310. S(n,7) = A004187(n+1), S(n,3) = A001906(n+1).
a(n) = ((7+3*sqrt(5))^n - (7-3*sqrt(5))^n + 2*((7+3*sqrt(5))^(n-1) - ((7-3*sqrt(5))^(n-1)))) / (3*(2^n)*sqrt(5)). - Gregory V. Richardson, Oct 13 2002
Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n-i, i); then a(n) = (-1)^n*q(n, -9). - Benoit Cloitre, Nov 10 2002
a(n) = L(n,-7)*(-1)^n, where L is defined as in A108299; see also A049685 for L(n,+7). - Reinhard Zumkeller, Jun 01 2005
Define f(x,s) = s*x + sqrt((s^2-1)*x^2+1); f(0,s)=0. a(n) = f(a(n-1),7/2) + f(a(n-2),7/2). - Marcos Carreira, Dec 27 2006
a(n+1) = 8*a(n) - 8*a(n-1) + a(n-2); a(1)=1, a(2)=8, a(3)=55. - Sture Sjöstedt, May 27 2009
a(n) = A167816(4*n+2). - Reinhard Zumkeller, Nov 13 2009
a(n)=b such that (-1)^n*Integral_{0..Pi/2} (cos((2*n+1)*x))/(3/2-sin(x)) dx = c + b*log(3). - Francesco Daddi, Aug 01 2011
a(n) = A000045(A016825(n)). - Michel Marcus, Mar 22 2015
a(n) = A001906(2*n+1). - R. J. Mathar, Apr 30 2017
E.g.f.: exp(7*x/2)*(5*cosh(3*sqrt(5)*x/2) + 3*sqrt(5)*sinh(3*sqrt(5)*x/2))/5. - Stefano Spezia, Apr 14 2025
From Peter Bala, Jun 08 2025: (Start)
Sum_{n >= 1} (-1)^(n+1)/(a(n) - 1/a(n)) = 1/9 [telescoping series: 3/(a(n) - 1/a(n)) = 1/Fibonacci(4*n+4) + 1/Fibonacci(4*n)].
Product_{n >= 1} (a(n) + 3)/(a(n) - 3) = 5/2 [telescoping product:
(a(n) + 3)/(a(n) - 3) = b(n)/b(n-1), where b(n) = (Lucas(4*n+4) - 3)/(Lucas(4*n+4) + 3)].
Product_{n >= 1} (a(n) + 1)/(a(n) - 1) = sqrt(9/5) [telescoping product:
(a(n) + 1)/(a(n) - 1) = c(n)/c(n-1) for n >= 1, where c(n) = Fibonacci(2*n+2)/Lucas(2*n+2)]. (End)
From Gerry Martens, Aug 20 2025: (Start)
a(n) = ((3 + sqrt(5))^(1 + 2*n) - (3 - sqrt(5))^(1 + 2*n)) / (2^(1 + 2*n)*sqrt(5)).
a(n) = Sum_{k=0..2*n} binomial(2*n + k + 1, 2*k + 1). (End)

A081068 a(n) = (Lucas(4*n+2) + 2)/5, or Fibonacci(2*n+1)^2, or A081067(n)/5.

Original entry on oeis.org

1, 4, 25, 169, 1156, 7921, 54289, 372100, 2550409, 17480761, 119814916, 821223649, 5628750625, 38580030724, 264431464441, 1812440220361, 12422650078084, 85146110326225, 583600122205489, 4000054745112196, 27416783093579881
Offset: 0

Views

Author

R. K. Guy, Mar 04 2003

Keywords

Comments

Indices of 12-gonal numbers which are also squares (A342709). - Bernard Schott, Mar 19 2021
Values of y in solutions of x^2 = 5*y^2 - 4*y in positive integers. See A360467 for how this relates to a problem regarding the subdivision of a square into four triangles of integer area. - Alexander M. Domashenko, Feb 26 2023
And the corresponding x values of x^2 = 5*y^2 - 4*y are in A033890. - Bernard Schott, Feb 26 2023

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 19.
  • Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75.

Crossrefs

Cf. A000045 (Fibonacci numbers), A000032 (Lucas numbers), A081067.

Programs

  • Magma
    I:=[1, 4, 25]; [n le 3 select I[n] else 8*Self(n-1)-8*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 26 2012
    
  • Magma
    [(Lucas(4*n+2) + 2)/5: n in [0..30]]; // G. C. Greubel, Dec 17 2017
    
  • Maple
    luc := proc(n) option remember: if n=0 then RETURN(2) fi: if n=1 then RETURN(1) fi: luc(n-1)+luc(n-2): end: for n from 0 to 40 do printf(`%d,`,(luc(4*n+2)+2)/5) od: # James Sellers, Mar 05 2003
  • Mathematica
    CoefficientList[Series[-(1-4*x+x^2)/((x-1)*(x^2-7*x+1)),{x,0,40}],x] (* or *) LinearRecurrence[{8,-8,1},{1,4,25},50] (* Vincenzo Librandi, Jun 26 2012 *)
    Table[(LucasL[4*n+2] + 2)/5, {n,0,30}] (* G. C. Greubel, Dec 17 2017 *)
  • PARI
    main(size)={ return(concat([1],vector(size,n,fibonacci(2*n+1)^2))) } /* Anders Hellström, Jul 11 2015 */
    
  • PARI
    for(n=0,30, print1(fibonacci(2*n+1)^2, ", ")) \\ G. C. Greubel, Dec 17 2017

Formula

a(n) = A001519(n+1)^2 = A122367(n)^2 = A058038(n) + 1.
a(n) = A103433(n+1) - A103433(n).
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
a(n) = Fibonacci(2*n)*Fibonacci(2*n+2) +1. - Gary Detlefs, Apr 01 2012
G.f.: (1-4*x+x^2)/((1-x)*(x^2-7*x+1)). - Colin Barker, Jun 26 2012
Sum_{n>=0} 1/(a(n) + 1) = 1/3*sqrt(5). - Peter Bala, Nov 30 2013
Sum_{n>=0} 1/a(n) = sqrt(5) * Sum_{n>=1} (-1)^(n+1)*n/Fibonacci(2*n) (Jennings, 1994). - Amiram Eldar, Oct 30 2020
Product_{n>=1} (1 + 1/a(n)) = phi^2/2 (A239798), where phi is the golden ratio (A001622) (Davlianidze, 2020). - Amiram Eldar, Dec 01 2021

Extensions

More terms from James Sellers, Mar 05 2003

A342710 Solutions x to the Pell-Fermat equation x^2 - 5*y^2 = 4.

Original entry on oeis.org

3, 18, 123, 843, 5778, 39603, 271443, 1860498, 12752043, 87403803, 599074578, 4106118243, 28143753123, 192900153618, 1322157322203, 9062201101803, 62113250390418, 425730551631123, 2918000611027443, 20000273725560978, 137083915467899403, 939587134549734843
Offset: 0

Views

Author

Bernard Schott, Mar 19 2021

Keywords

Comments

This Pell equation is used to find the 12-gonal square numbers (see A342709).
The corresponding solutions y are in A033890.
Essentially the same as A246453. - R. J. Mathar, Mar 24 2021

Examples

			a(1)^2 - 5 * A033890(1)^2 = 18^2 - 5 * 8^2 = 4.
		

Crossrefs

a(n) = 3*A049685(n). - Hugo Pfoertner, Mar 19 2021

Programs

  • Mathematica
    LinearRecurrence[{7, -1}, {3, 18}, 20] (* Amiram Eldar, Mar 19 2021 *)
    Table[2 ChebyshevT[2 n + 1, 3/2], {n, 0, 20}] (* Eric W. Weisstein, Sep 02 2025 *)
    Table[2 Cos[(2 n + 1) ArcCos[3/2]], {n, 0, 20}] // FunctionExpand (* Eric W. Weisstein, Sep 02 2025 *)

Formula

a(n) = 7*a(n-1) - a(n-2).
a(n) = 2*T(2*n+1, 3/2), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. - Peter Bala, Jul 02 2022
From Stefano Spezia, Apr 14 2025: (Start)
G.f.: 3*(1 - x)/(1 - 7*x + x^2).
E.g.f.: exp(7*x/2)*(3*cosh(3*sqrt(5)*x/2) + sqrt(5)*sinh(3*sqrt(5)*x/2)). (End)
a(n) = 2*cos((2*n+1)*arccos(3/2)). - Eric W. Weisstein, Sep 02 2025

A333641 11-gonal (or hendecagonal) square numbers.

Original entry on oeis.org

0, 1, 196, 29241, 1755625, 261468900, 38941102225, 2337990844401, 348201795147556, 51858411008887561, 3113535139359330841, 463705205422871375236, 69060571958250748760481, 4146338334574433921200225, 617522713934165528806340100, 91968930524758079223806760025
Offset: 1

Views

Author

Bernard Schott, Mar 31 2020

Keywords

Comments

The 11-gonal square numbers correspond to the nonnegative integer solutions of the Diophantine equation k*(9*k-7)/2 = m^2, equivalent to (18*k-7)^2 - 72*m^2 = 49. Substituting x = 18*k-7 and y = m gives the Pell equation x^2-72*y^2 = 49. The integer solutions (x,y) = (-7,0), (11,1), (119,14), (1451,171), (11243,1325), ... correspond to the following solutions (k,m) = (0,0), (1,1), (7,14), (81,171), (625,1325), ...

Examples

			1755625 is a term because 625*(9*625-7)/2 = 1325^2 = 1755625; that means that 1755625 is the 625th 11-gonal number and the square of 1325.
		

Crossrefs

Intersection of A000290 (squares) and A051682 (11-gonals).
Cf. A106525.
Cf. A001110 (square triangulars), A036353 (square pentagonals), A046177 (square hexagonals), A036354 (square heptagonals), A036428 (square octagonals), A036411 (square 9-gonals), A188896 (only {0,1} are square 10-gonals), this sequence (square 11-gonals), A342709 (square 12-gonals).

Programs

  • Maple
    for k from 0 to 8000000 do
    d:= k*(9*k-7)/2;
    if issqr(d) then print(k,sqrt(d),d); else fi; od:
  • Mathematica
    Last /@ Solve[(18*x - 7)^2 - 72*y^2 == 49 && x >= 0 && y >= 0 && y < 10^16, {x, y}, Integers] /. Rule -> (#2^2 &) (* Amiram Eldar, Mar 31 2020 *)
  • PARI
    concat(0, Vec(-x*(1 + 195*x + 29045*x^2 + 394670*x^3 + 29045*x^4 + 195*x^5 + x^6)/(-1 + x + 1331714*x^3 - 1331714*x^4 - x^6 + x^7) + O(x^20))) \\ Jinyuan Wang, Mar 31 2020

Formula

a(n) = k*(9*k-7)/2 for n > 1, where k = (A106525(4*n-6) + 7)/18. - Jinyuan Wang, Mar 31 2020

Extensions

More terms from Amiram Eldar, Mar 31 2020

A378948 Numbers that are simultaneously 12-gonal and cubes.

Original entry on oeis.org

0, 1, 64, 150568768
Offset: 1

Views

Author

Kelvin Voskuijl, Dec 11 2024

Keywords

Examples

			64 is a term because it is both the fourth cube and the fourth 12-gonal number.
		

Crossrefs

Intersection of A000578 (cubes) and A051624 (12-gonal numbers).
Cf. A342709 (numbers both 12-gonal and square).

Programs

  • Mathematica
    Select[Table[-4 n + 5 n^2 , {n, 0, 10000}], IntegerQ @ Cbrt[#] &]
Showing 1-5 of 5 results.