cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A033889 a(n) = Fibonacci(4*n + 1).

Original entry on oeis.org

1, 5, 34, 233, 1597, 10946, 75025, 514229, 3524578, 24157817, 165580141, 1134903170, 7778742049, 53316291173, 365435296162, 2504730781961, 17167680177565, 117669030460994, 806515533049393, 5527939700884757, 37889062373143906, 259695496911122585, 1779979416004714189
Offset: 0

Views

Author

Keywords

Comments

For positive n, a(n) equals (-1)^n times the permanent of the (4n) X (4n) tridiagonal matrix with sqrt(i)'s along the three central diagonals, where i is the imaginary unit. - John M. Campbell, Jul 12 2011
a(n) = 5^n*a(n; 3/5) = (16/5)^n*a(2*n; 3/4), and F(4*n) = 5^n*b(n; 3/5) = (16/5)^n*b(2*n; 3/4), where a(n; d) and b(n; d), n=0, 1, ..., d in C, denote the delta-Fibonacci numbers defined in comments to A014445. Two of these identities from the following relations follows: F(k+1)^n*a(n; F(k)/F(k+1)) = F(k*n+1) and F(k+1)^n*b(n; F(k)/F(k+1)) = F(k*n) (see also Witula's et al. papers). - Roman Witula, Jul 24 2012

Crossrefs

Programs

Formula

a(n) = 7*a(n-1) - a(n-2) for n >= 2. - Floor van Lamoen, Dec 10 2001
From R. J. Mathar, Jan 17 2008: (Start)
O.g.f.: (1 - 2*x)/(1 - 7*x + x^2).
a(n) = A004187(n+1) - 2*A004187(n). (End); corrected by Klaus Purath, Jul 29 2020
a(n) = A167816(4*n+1). - Reinhard Zumkeller, Nov 13 2009
a(n) = sqrt(1 + 2 * Fibonacci(2*n) * Fibonacci(2*n + 1) + 5 * (Fibonacci(2*n) * Fibonacci(2*n + 1))^2). - Artur Jasinski, Feb 06 2010
a(n) = Sum_{k=0..n} A122070(n,k)*2^k. - Philippe Deléham, Mar 13 2012
a(n) = Fibonacci(2*n)^2 + Fibonacci(2*n)*Fibonacci(2*n+2) + 1. - Gary Detlefs, Apr 18 2012
a(n) = Fibonacci(2*n)^2 + Fibonacci(2*n+1)^2. - Bruno Berselli, Apr 19 2012
a(n) = Sum_{k = 0..n} A238731(n,k)*4^k. - Philippe Deléham, Mar 05 2014
a(n) = A000045(A016813(n)). - Michel Marcus, Mar 05 2014
2*a(n) = Fibonacci(4*n) + Lucas(4*n). - Bruno Berselli, Oct 13 2017
a(n) = A094567(n-1) + A094567(n), assuming A094567(-1) = 0. - Klaus Purath, Jul 29 2020
Sum_{n>=0} (-1)^n * arctan(3/a(n)) = Pi/4 (A003881) (Wan, 2022). - Amiram Eldar, Mar 01 2024
E.g.f.: exp(7*x/2)*(5*cosh(3*sqrt(5)*x/2) + sqrt(5)*sinh(3*sqrt(5)*x/2))/5. - Stefano Spezia, Jun 03 2024

A058038 a(n) = Fibonacci(2*n)*Fibonacci(2*n+2).

Original entry on oeis.org

0, 3, 24, 168, 1155, 7920, 54288, 372099, 2550408, 17480760, 119814915, 821223648, 5628750624, 38580030723, 264431464440, 1812440220360, 12422650078083, 85146110326224, 583600122205488, 4000054745112195, 27416783093579880, 187917426909946968
Offset: 0

Views

Author

N. J. A. Sloane, Jun 09 2002

Keywords

Comments

Partial sums of A033888, i.e., a(n) = Sum_{k=0..n} Fibonacci(4*k). - Vladeta Jovovic, Jun 09 2002
From Paul Weisenhorn, May 17 2009: (Start)
a(n) is the solution of the 2 equations a(n)+1=A^2 and 5*a(n)+1=B^2
which are equivalent to the Pell equation (10*a(n)+3)^2-5*(A*B)^2=4.
(End)
Numbers a(n) such as a(n)+1 and 5*a(n)+1 are perfect squares. - Sture Sjöstedt, Nov 03 2011

Examples

			G.f. = 3*x + 24*x^2 + 168*x^3 + 1155*x^4 + 7920*x^5 + 54288*x^6 + ... - _Michael Somos_, Jan 23 2025
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 29.
  • H. J. H. Tuenter, Fibonacci summation identities arising from Catalan's identity, Fib. Q., 60:4 (2022), 312-319.

Crossrefs

Bisection of A059929, A064831 and A080097.
Related to sum of fibonacci(kn) over n; cf. A000071, A099919, A027941, A138134, A053606.

Programs

  • Magma
    [Fibonacci(2*n)*Fibonacci(2*n+2): n in [0..30]]; // Vincenzo Librandi, Apr 18 2011
    
  • Maple
    fs4:=n->sum(fibonacci(4*k),k=0..n):seq(fs4(n),n=0..21); # Gary Detlefs, Dec 07 2010
  • Mathematica
    Table[Fibonacci[2 n]*Fibonacci[2 n + 2], {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Jul 01 2011 *)
    Accumulate[Fibonacci[4*Range[0,30]]] (* or *) LinearRecurrence[{8,-8,1},{0,3,24},30] (* Harvey P. Dale, Jul 25 2013 *)
  • PARI
    a(n)=fibonacci(2*n)*fibonacci(2*n+2) \\ Charles R Greathouse IV, Jul 02 2013

Formula

a(n) = -3/5 + (1/5*sqrt(5)+3/5)*(2*1/(7+3*sqrt(5)))^n/(7+3*sqrt(5)) + (1/5*sqrt(5)-3/5)*(-2*1/(-7+3*sqrt(5)))^n/(-7+3*sqrt(5)). Recurrence: a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3). G.f.: 3*x/(1-7*x+x^2)/(1-x). - Vladeta Jovovic, Jun 09 2002
a(n) = A081068(n) - 1.
a(n) is the next integer from ((3+sqrt(5))*((7+3*sqrt(5))/2)^(n-1)-6)/10. - Paul Weisenhorn, May 17 2009
a(n) = 7*a(n-1) - a(n-2) + 3, n>1. - Gary Detlefs, Dec 07 2010
a(n) = sum_{k=0..n} Fibonacci(4k). - Gary Detlefs, Dec 07 2010
a(n) = (Lucas(4n+2)-3)/5, where Lucas(n)= A000032(n). - Gary Detlefs, Dec 07 2010
a(n) = (1/5)*(Fibonacci(4n+4) - Fibonacci(4n)-3). - Gary Detlefs, Dec 08 2010
a(n) = 3*A092521(n). - R. J. Mathar, Nov 03 2011
a(0)=0, a(1)=3, a(2)=24, a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3). - Harvey P. Dale, Jul 25 2013
a(n) = A001906(n)*A001906(n+1). - R. J. Mathar, Jul 09 2019
Sum_{n>=1} 1/a(n) = 2/(3 + sqrt(5)) = A094874 - 1. - Amiram Eldar, Oct 05 2020
a(n) = a(-1-n) for all n in Z. - Michael Somos, Jan 23 2025

A264017 T(n,k)=Number of (n+1)X(k+1) arrays of permutations of 0..(n+1)*(k+1)-1 with each element having index change +-(.,.) 0,0 1,2 or 2,2.

Original entry on oeis.org

1, 2, 1, 4, 5, 1, 8, 25, 13, 1, 16, 105, 169, 34, 1, 32, 441, 1573, 1156, 89, 1, 64, 1869, 14641, 20570, 7921, 233, 1, 128, 7921, 146410, 366025, 269225, 54289, 610, 1, 256, 33553, 1464100, 7320500, 9150625, 3524125, 372100, 1597, 1, 512, 142129, 14641000
Offset: 1

Views

Author

R. H. Hardin, Nov 01 2015

Keywords

Comments

Table starts
.1....2........4..........8............16...............32..................64
.1....5.......25........105...........441.............1869................7921
.1...13......169.......1573.........14641...........146410.............1464100
.1...34.....1156......20570........366025..........7320500...........146410000
.1...89.....7921.....269225.......9150625........398967250.........17394972100
.1..233....54289....3524125.....228765625......21860843125.......2089022169025
.1..610...372100...46131250....5719140625....1201888840625.....252579343635025
.1.1597..2550409..603865625..142978515625...66099082156250...30557658560100100
.1.4181.17480761.7904703125.3574462890625.3635200164062500.3696969485250250000

Examples

			Some solutions for n=4 k=4
..0..8..9..3..4....0.13..2..3..4....7..1.14..3..4....7..1.14..3..4
..5.13.14..1..2...12..6..7..8..9...17..6..0..8..9...12.13..0..8..9
.17.18.12..6..7...22.23.24..1.14...10.11..5.13..2...17.18..5..6..2
.15.16.10.11.19...15.16..5.18.19...15.23.24.18.19...15.16.10.11.19
.20.21.22.23.24...20.21.10.11.17...20.21.22.16.12...20.21.22.23.24
		

Crossrefs

Column 2 is A001519(n+1).
Column 3 is A081068.
Row 1 is A000079(n-1).

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 3*a(n-1) -a(n-2)
k=3: a(n) = 8*a(n-1) -8*a(n-2) +a(n-3)
k=4: a(n) = 15*a(n-1) -25*a(n-2) for n>4
k=5: a(n) = 25*a(n-1) for n>3
k=6: a(n) = 60*a(n-1) -300*a(n-2) +1500*a(n-3) -7500*a(n-4) +3125*a(n-5) for n>7
k=7: [order 13] for n>15
Empirical for row n:
n=1: a(n) = 2*a(n-1)
n=2: a(n) = 4*a(n-1) +4*a(n-3) +a(n-4)
n=3: a(n) = 10*a(n-1) for n>5
n=4: a(n) = 19*a(n-1) +304*a(n-3) +256*a(n-4) for n>8
n=5: [order 14] for n>18
n=6: [order 25] for n>31

A264131 T(n,k)=Number of (n+1)X(k+1) arrays of permutations of 0..(n+1)*(k+1)-1 with each element having index change +-(.,.) 0,0 0,2 or 1,2.

Original entry on oeis.org

1, 5, 1, 25, 13, 1, 80, 169, 34, 1, 256, 1040, 1156, 89, 1, 976, 6400, 13600, 7921, 233, 1, 3721, 53280, 160000, 178000, 54289, 610, 1, 13725, 443556, 2920000, 4000000, 2330000, 372100, 1597, 1, 50625, 3383280, 53290000, 160564000, 100000000
Offset: 1

Views

Author

R. H. Hardin, Nov 03 2015

Keywords

Comments

Table starts
.1.....5........25.........80.........256..........976.........3721
.1....13.......169.......1040........6400........53280.......443556
.1....34......1156......13600......160000......2920000.....53290000
.1....89......7921.....178000.....4000000....160564000...6445199524
.1...233.....54289....2330000...100000000...8830490000.779775536401
.1...610....372100...30500000..2500000000.485643650000
.1..1597...2550409..399250000.62500000000
.1..4181..17480761.5226250000
.1.10946.119814916
.1.28657

Examples

			Some solutions for n=4 k=4
..0..1..9..3..4....0..1..4..3..2....0..1..2..3..4....0..1..4..3..2
..7..8..5..6..2....5..8.14..6..9....5..8..7..6..9....7..8..5..6..9
.10.11.14.13.12...12.18.10.13..7...17.18.19.13.14...10.13.19.11.14
.15.16.24.18.19...15.16.19.11.17...15.23.10.11.12...22.18.15.16.12
.22.21.20.23.17...20.21.24.23.22...20.21.22.16.24...20.23.24.21.17
		

Crossrefs

Column 2 is A001519(n+2).
Column 3 is A081068(n+1).

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 3*a(n-1) -a(n-2)
k=3: a(n) = 8*a(n-1) -8*a(n-2) +a(n-3)
k=4: a(n) = 15*a(n-1) -25*a(n-2)
k=5: a(n) = 25*a(n-1)
k=6: a(n) = 60*a(n-1) -300*a(n-2) +1500*a(n-3) -7500*a(n-4) +3125*a(n-5)
Empirical for row n:
n=1: a(n) = 4*a(n-1) -a(n-2) +15*a(n-4) -60*a(n-5) +15*a(n-6) -15*a(n-8) +60*a(n-9) -15*a(n-10) +a(n-12) -4*a(n-13) +a(n-14)

A103433 a(n) = Sum_{i=1..n} Fibonacci(2i-1)^2.

Original entry on oeis.org

0, 1, 5, 30, 199, 1355, 9276, 63565, 435665, 2986074, 20466835, 140281751, 961505400, 6590256025, 45170286749, 309601751190, 2122041971551, 14544692049635, 99690802375860, 683290924581349, 4683345669693545
Offset: 0

Views

Author

Ralf Stephan, Feb 08 2005

Keywords

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 234.

Crossrefs

Partial sums of A081068. Bisection of A077916.

Programs

Formula

G.f.: x*(1-4*x+x^2) / ((1-7*x+x^2)(1-x)^2).
a(n) = (1/5)*(Fibonacci(4n) + 2n).
a(n) = (floor(5*n*phi) + 4*Fibonacci(4*n))/20, where phi =(1+sqrt(5))/2. - Gary Detlefs, Mar 10 2011
a(n) = (8*(n+2)*(Sum_{k=1..n} 1/(2*k^2 + 6*k + 4)) + Fibonacci(4*n))/5. - Gary Detlefs, Dec 07 2011
a(n) = | Sum_{i=0..2n-1} (-1)^i*F(i)*F(i+1) |, where F(n) = Fibonacci numbers (A000045). - Rigoberto Florez, May 04 2019

A342709 12-gonal (dodecagonal) square numbers.

Original entry on oeis.org

1, 64, 3025, 142129, 6677056, 313679521, 14736260449, 692290561600, 32522920134769, 1527884955772561, 71778070001175616, 3372041405099481409, 158414167969674450625, 7442093853169599697984, 349619996931001511354641, 16424697761903901433970161
Offset: 1

Views

Author

Bernard Schott, Mar 19 2021

Keywords

Comments

The 12-gonal square numbers k correspond to the nonnegative integer solutions of the Diophantine equation k = d*(5*d-4) = c^2, equivalent to (5*d-2)^2 - 5*c^2 = 4. Substituting x = 5*d-2 and y = c gives the Pell-Fermat's equation x^2 - 5*y^2 = 4.
The solutions x are in A342710, while corresponding solutions y that are also the indices c of the squares which are 12-gonal are in A033890.
The indices d of the corresponding 12-gonal which are squares are in A081068.

Examples

			142129 = 169*(5*169-4) = 377^2, so 142129 is the 169th 12-gonal number and the 377th square, hence 142129 is a term.
		

Crossrefs

Intersection of A000290 (squares) and A051624 (12-gonal numbers).
Similar for n-gonal squares: A001110 (triangular), A036353 (pentagonal), A046177 (hexagonal), A036354 (heptagonal), A036428 (octagonal), A036411 (9-gonal), A188896 (there are no 10-gonal squares > 1), A333641 (11-gonal), this sequence (12-gonal).

Programs

  • Maple
    with(combinat):
    seq(fibonacci(4*n-2)^2, n=1..16);
  • Mathematica
    Table[Fibonacci[4*n - 2]^2, {n, 1, 16}] (* Amiram Eldar, Mar 19 2021 *)
  • PARI
    a(n) = fibonacci(4*n-2)^2; \\ Michel Marcus, Mar 21 2021

Formula

G.f.: x*(1 + 16*x + x^2)/((1 - x)*(1 - 47*x + x^2)). - Stefano Spezia, Mar 20 2021
a(n) = 48*a(n-1) - 48*a(n-2) + a(n-3). - Kevin Ryde, Mar 20 2021
a(n) = 9*A161582(n) + 1. - Hugo Pfoertner, Mar 19 2021
a(n) = A033890(n-1)^2.

A081067 a(n) = Lucas(4n+2)+2, or 5*Fibonacci(2n+1)^2.

Original entry on oeis.org

5, 20, 125, 845, 5780, 39605, 271445, 1860500, 12752045, 87403805, 599074580, 4106118245, 28143753125, 192900153620, 1322157322205, 9062201101805, 62113250390420, 425730551631125, 2918000611027445, 20000273725560980
Offset: 0

Views

Author

R. K. Guy, Mar 04 2003

Keywords

Comments

a(n) is the square of limit of (G(j+2n-1) + G(j-2n+1))/G(j) as j -> infinity, where G(n) is any sequence of the form G(n+1) = G(n) + G(n-1), with any starting values, including non-integer values. G(n) includes Lucas and Fibonacci. Compare with A005248 for even number offsets from j in any such G(n). - Richard R. Forberg, Nov 16 2014
a(n) = (t(i+6n+3) + t(i))/(t(i+4n+2) + t(i+2n+1)) + 3, where (t) is any sequence of the form t(n+2) = 2t(n+1) + 2t(n) - t(n-1) or of the form t(n+1) = 3t(n) - t(n-1) without regard to initial values as long as t(i+4n+2) + t(i+2n+1) != 0. - Klaus Purath, Jun 23 2024

References

  • Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75.

Crossrefs

Cf. A000045 (Fibonacci numbers), A000032 (Lucas numbers).

Programs

  • Maple
    luc := proc(n) option remember: if n=0 then RETURN(2) fi: if n=1 then RETURN(1) fi: luc(n-1)+luc(n-2): end: for n from 0 to 40 do printf(`%d,`,luc(4*n+2)+2) od: # James Sellers, Mar 05 2003
  • Mathematica
    Table[LucasL[4n+2]+2,{n,0,20}] (* or *)
    Table[5Fibonacci[2n+1]^2,{n,0,30}] (* Harvey P. Dale, Apr 18 2011 *)
  • PARI
    a(n)=5*fibonacci(2*n+1)^2 \\ Charles R Greathouse IV, Nov 17 2014

Formula

a(n) = 8a(n-1) - 8a(n-2) + a(n-3).
G.f.: -5*(x^2-4*x+1)/((x-1)*(x^2-7*x+1)). - Colin Barker, Jun 25 2012
a(n) ~ phi^(4n+2). - Charles R Greathouse IV, Nov 17 2014
a(n) = 5*A081068(n). - R. J. Mathar, Feb 13 2016

A276266 a(0) = a(1) = a(2) = 1; for n>2, a(n) = ( a(n-1)*a(n-2) + 1 )^2 / a(n-3).

Original entry on oeis.org

1, 1, 1, 4, 25, 10201, 16259565169, 1100432328310492581042546436, 31383529740086705883339675381564403354342372463018335778292540655564225
Offset: 0

Views

Author

Seiichi Manyama, Aug 26 2016

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n] == (a[n - 1] a[n - 2] + 1)^2/a[n - 3], a[0] == a[1] == a[2] == 1}, a, {n, 0, 8}] (* Michael De Vlieger, Aug 26 2016 *)
  • Ruby
    def A(m, n)
      a = Array.new(m, 1)
      ary = [1]
      while ary.size < n + 1
        i = a[1..-1].inject(:*) + 1
        i *= i
        break if i % a[0] > 0
        a = *a[1..-1], i / a[0]
        ary << a[0]
      end
      ary
    end
    def A276266(n)
      A(3, n)
    end

Formula

a(n) = A208209(n)^2.

A360467 a(n) = Fibonacci(4*n+2) + 3*Fibonacci(2*n+1)^2.

Original entry on oeis.org

4, 20, 130, 884, 6052, 41474, 284260, 1948340, 13354114, 91530452, 627359044, 4299982850, 29472520900, 202007663444, 1384581123202, 9490060198964, 65045840269540, 445830821687810, 3055769911545124, 20944558559128052, 143556140002351234, 983948421457330580
Offset: 0

Views

Author

Keywords

Comments

Values of x + 3*y in solutions of x^2 = 5*y^2 - 4*y in positive integers. In the solutions, the values of x and y are given by Fibonacci(4*n + 2) and Fibonacci(2*n + 1)^2 respectively.
The above Diophantine equation arises out of the following problem regarding the subdivision of a square into four triangles of integer area. For n >= 1, the sequence gives the areas of the squares in the solutions (see illustration in Links). Two lines are drawn from a corner of a square to points on the opposing sides. A third line is added between the two points so that the square is divided into four triangles. The area of each triangle is required to be an integer and those of the right triangles to form an arithmetic progression with difference 1. The smallest right triangle by area is the one formed by the third line. In the solutions, the area of the inner triangle is given by Fibonacci(4*n + 2) and the total area of the three right triangles is 3*Fibonacci(2*n + 1)^2. The area of the square is then equal to a(n).

Examples

			a(2) = F(4*2+2) + 3*F(2*2 +1)^2 = F(10) + 3*F(5)^2 = 55 + 3*5^2 = 130.
a(4) = F(4*4+2) + 3*F(2*4 +1)^2 = F(18) + 3*F(9)^2 = 2584+ 3*34^2 = 6052.
G.f. = 4 + 20*x + 130*x^2 + 884*x^3 + 6052*x^4 + ... - _Michael Somos_, Mar 02 2023
		

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n < 3 then return [4, 20, 130][n + 1] fi;
    a(n-3) - 8 * (a(n-2) - a(n-1)) end: seq(a(n), n = 0..22); # Peter Luschny, Feb 17 2023
  • Mathematica
    LinearRecurrence[{8, -8, 1}, {4, 20, 130}, 22] (* Amiram Eldar, Feb 17 2023 *)
    a[ n_] := 2 * Fibonacci[2*n+1] * Fibonacci[2*n+3]; (* Michael Somos, Mar 02 2023 *)
  • PARI
    Vec(2*(2 - 6*x + x^2)/((1 - x)*(1 - 7*x + x^2)) + O(x^25)) \\ Andrew Howroyd, Feb 16 2023
    
  • SageMath
    print([2*(lucas_number2(n+1, 7, 1) + 3) // 5 for n in range(23)]) # Peter Luschny, Feb 17 2023

Formula

a(n) = A033890(n) + 3*A081068(n)^2.
a(n) = Fibonacci(2*n+1)*(Fibonacci(2*n) + Fibonacci(2*n+2) + 3*Fibonacci(2*n+1)).
a(n) = 2*A064170(n+3).
G.f.: 2*(2 - 6*x + x^2)/((1 - x)*(1 - 7*x + x^2)). - Andrew Howroyd, Feb 16 2023
a(n) = a(n-3) - 8 * (a(n-2) - a(n-1)) for n >= 3. - Peter Luschny, Feb 17 2023
a(n) = a(-2-n) = 2*F(2*n+1) * F(2*n+3) = A295683(4*(n+1)) for all n in Z. - Michael Somos, Mar 02 2023

A276268 a(0) = a(1) = a(2) = a(3) = 1; for n>3, a(n) = ( a(n-1)*a(n-2)*a(n-3) + 1 )^2 / a(n-4).

Original entry on oeis.org

1, 1, 1, 1, 4, 25, 10201, 1040606050201, 17606710134796383100801078407630169, 1397251576763829044923817239566095383950667477080314561212188721224520791793149263311589905001958916
Offset: 0

Views

Author

Seiichi Manyama, Aug 26 2016

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n] == (a[n - 1] a[n - 2] a[n - 3] + 1)^2/a[n - 4], a[0] == a[1] == a[2] == a[3] == 1}, a, {n, 0, 10}] (* Michael De Vlieger, Aug 26 2016 *)
    nxt[{a_,b_,c_,d_}]:={b,c,d,(b*c*d+1)^2/a}; NestList[nxt,{1,1,1,1},10][[All,1]] (* Harvey P. Dale, Jan 31 2020 *)
  • Ruby
    def A(m, n)
      a = Array.new(m, 1)
      ary = [1]
      while ary.size < n + 1
        i = a[1..-1].inject(:*) + 1
        i *= i
        break if i % a[0] > 0
        a = *a[1..-1], i / a[0]
        ary << a[0]
      end
      ary
    end
    def A276268(n)
      A(4, n)
    end

Formula

a(n) = A276267(n)^2.
Showing 1-10 of 12 results. Next