A014445
Even Fibonacci numbers; or, Fibonacci(3*n).
Original entry on oeis.org
0, 2, 8, 34, 144, 610, 2584, 10946, 46368, 196418, 832040, 3524578, 14930352, 63245986, 267914296, 1134903170, 4807526976, 20365011074, 86267571272, 365435296162, 1548008755920, 6557470319842, 27777890035288, 117669030460994, 498454011879264, 2111485077978050
Offset: 0
G.f. = 2*x + 8*x^2 + 34*x^3 + 144*x^4 + 610*x^5 + 2584*x^6 + 10946*x^7 + ...
- Arthur T. Benjamin and Jennifer J. Quinn,, Proofs that really count: the art of combinatorial proof, M.A.A., 2003, id. 232.
- T. D. Noe, Table of n, a(n) for n = 0..200
- Mohammad K. Azarian, Fibonacci Identities as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 38 (2012), pp. 1871-1876 (See Corollary 1 (v)).
- H. H. Ferns, Problem B-115, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 5, No. 2 (1967), p. 202; Identities for F_{kn} and L{kn}, Solution to Problem B-115 by Stanley Rabinowitz, ibid., Vol. 6, No. 1 (1968), pp. 92-93.
- Ira M. Gessel and Ji Li, Compositions and Fibonacci identities, J. Int. Seq., Vol. 16 (2013), Article 13.4.5.
- Edyta Hetmaniok, Bozena Piatek, and Roman Wituła, Binomials Transformation Formulae of Scaled Fibonacci Numbers, Open Math., Vol. 15 (2017), pp. 477-485.
- Tanya Khovanova, Recursive Sequences.
- Ron Knott, Mathematics of the Fibonacci Series.
- Bahar Kuloğlu, Engin Özkan, and Marin Marin, Fibonacci and Lucas Polynomials in n-gon, An. Şt. Univ. Ovidius Constanţa (Romania 2023) Vol. 31, No 2, 127-140.
- Peter McCalla and Asamoah Nkwanta, Catalan and Motzkin Integral Representations, arXiv:1901.07092 [math.NT], 2019.
- Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1.
- Roberto Tauraso, Some Congruences for Central Binomial Sums Involving Fibonacci and Lucas Numbers, JIS 19 (2016) # 16.5.4
- Roman Witula and Damian Slota, delta-Fibonacci numbers, Appl. Anal. Discr. Math., Vol. 3, No. 2 (2009), pp. 310-329, MR2555042.
- Roman Witula, Binomials transformation formulae of scaled Lucas numbers, Demonstratio Math., Vol. 46 (2013), pp. 15-27.
- Index entries for linear recurrences with constant coefficients, signature (4,1).
Cf.
A001519,
A001906,
A015448,
A020699,
A033887,
A033889,
A074872,
A081567,
A081568,
A081569,
A081574,
A081575,
A098317,
A163073.
-
[Fibonacci(3*n): n in [0..30]]; // Vincenzo Librandi, Apr 18 2011
-
a:= n-> (<<0|1>, <1|1>>^(3*n))[1,2]:
seq(a(n), n=0..25); # Alois P. Heinz, Feb 03 2023
-
Table[Fibonacci[3n], {n,0,30}] (* Stefan Steinerberger, Apr 07 2006 *)
LinearRecurrence[{4,1},{0,2},30] (* Harvey P. Dale, Nov 14 2021 *)
Table[ SeriesCoefficient[2*x/(1 - 4*x - x^2), {x, 0, n}], {n, 0, 20}] (* Nikolaos Pantelidis, Feb 02 2023 *)
-
numlib::fibonacci(3*n) $ n = 0..30; // Zerinvary Lajos, May 09 2008
-
a(n)=fibonacci(3*n) \\ Charles R Greathouse IV, Oct 25 2012
-
[fibonacci(3*n) for n in range(0, 30)] # Zerinvary Lajos, May 15 2009
A081016
a(n) = (Lucas(4*n+3) + 1)/5, or Fibonacci(2*n+1)*Fibonacci(2*n+2), or A081015(n)/5.
Original entry on oeis.org
1, 6, 40, 273, 1870, 12816, 87841, 602070, 4126648, 28284465, 193864606, 1328767776, 9107509825, 62423800998, 427859097160, 2932589879121, 20100270056686, 137769300517680, 944284833567073, 6472224534451830
Offset: 0
- Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75.
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 26.
-
List([0..30], n-> (Lucas(1,-1,4*n+3)[2] +1)/5 ); # G. C. Greubel, Jul 13 2019
-
[(Lucas(4*n+3) +1)/5: n in [0..30]]; // G. C. Greubel, Dec 18 2017
-
luc := proc(n) option remember: if n=0 then RETURN(2) fi: if n=1 then RETURN(1) fi: luc(n-1)+luc(n-2): end: for n from 0 to 25 do printf(`%d,`,(luc(4*n+3)+1)/5) od: # James Sellers, Mar 03 2003
-
LinearRecurrence[{8,-8,1}, {1,6,40}, 30] (* Bruno Berselli, Aug 31 2017 *)
-
a(n)=([0,1,0; 0,0,1; 1,-8,8]^n*[1;6;40])[1,1] \\ Charles R Greathouse IV, Sep 28 2015
-
first(n) = Vec((1-2*x)/((1-x)*(1-7*x+x^2)) + O(x^n)) \\ Iain Fox, Dec 19 2017
-
[(lucas_number2(4*n+3,1,-1) +1)/5 for n in (0..30)] # G. C. Greubel, Jul 13 2019
A103134
a(n) = Fibonacci(6n+4).
Original entry on oeis.org
3, 55, 987, 17711, 317811, 5702887, 102334155, 1836311903, 32951280099, 591286729879, 10610209857723, 190392490709135, 3416454622906707, 61305790721611591, 1100087778366101931, 19740274219868223167, 354224848179261915075, 6356306993006846248183
Offset: 0
Cf.
A000032,
A000045,
A001906,
A001519,
A015448,
A014445,
A033888,
A033889,
A033890,
A033891,
A049310,
A049660,
A102312,
A099100,
A134490,
A134491,
A134492,
A134493,
A134494,
A134495,
A103134,
A134497,
A134498,
A134499,
A134500,
A134501,
A134502,
A134503,
A134504.
-
[Fibonacci(6*n +4): n in [0..100]]; // Vincenzo Librandi, Apr 17 2011
-
Table[Fibonacci[6n+4], {n, 0, 30}]
LinearRecurrence[{18,-1},{3,55},20] (* Harvey P. Dale, Mar 29 2023 *)
Table[ChebyshevU[3*n+1, 3/2], {n, 0, 20}] (* Vaclav Kotesovec, May 27 2023 *)
-
a(n)=fibonacci(6*n+4) \\ Charles R Greathouse IV, Feb 05 2013
A238731
Riordan array ((1-2*x)/(1-3*x+x^2), x/(1-3*x+x^2)).
Original entry on oeis.org
1, 1, 1, 2, 4, 1, 5, 13, 7, 1, 13, 40, 33, 10, 1, 34, 120, 132, 62, 13, 1, 89, 354, 483, 308, 100, 16, 1, 233, 1031, 1671, 1345, 595, 147, 19, 1, 610, 2972, 5561, 5398, 3030, 1020, 203, 22, 1, 1597, 8495, 17984, 20410, 13893, 5943, 1610, 268, 25, 1, 4181
Offset: 0
Triangle begins:
1;
1, 1;
2, 4, 1;
5, 13, 7, 1;
13, 40, 33, 10, 1;
34, 120, 132, 62, 13, 1;
89, 354, 483, 308, 100, 16, 1;
233, 1031, 1671, 1345, 595, 147, 19, 1;...
Triangle (0, 1, 1, 1, 0, 0, 0, ...) DELTA (1, 0, 2, -2, 0, 0, ...) begins:
1;
0, 1;
0, 1, 1;
0, 2, 4, 1;
0, 5, 13, 7, 1;
0, 13, 40, 33, 10, 1;
0, 34, 120, 132, 62, 13, 1;
0, 89, 354, 483, 308, 100, 16, 1;
0, 233, 1031, 1671, 1345, 595, 147, 19, 1;...
-
(* The function RiordanArray is defined in A256893. *)
RiordanArray[(1-2#)/(1-3#+#^2)&, x/(1-3#+#^2)&, 10] // Flatten (* Jean-François Alcover, Jul 16 2019 *)
A134504
a(n) = Fibonacci(7n + 6).
Original entry on oeis.org
8, 233, 6765, 196418, 5702887, 165580141, 4807526976, 139583862445, 4052739537881, 117669030460994, 3416454622906707, 99194853094755497, 2880067194370816120, 83621143489848422977, 2427893228399975082453
Offset: 0
Cf.
A000045,
A001906,
A001519,
A033887,
A015448,
A014445,
A033888,
A033889,
A033890,
A033891,
A102312,
A099100,
A134490,
A134491,
A134492,
A134493,
A134494,
A134495,
A103134,
A134497,
A134498,
A134499,
A134500,
A134501,
A134502,
A134503,
A134504.
-
[Fibonacci(7*n +6): n in [0..100]]; // Vincenzo Librandi, Apr 17 2011
-
Table[Fibonacci[7n+6], {n, 0, 30}]
LinearRecurrence[{29,1},{8,233},20] (* Harvey P. Dale, Jul 21 2021 *)
-
a(n)=fibonacci(7*n+6) \\ Charles R Greathouse IV, Jun 11 2015
A056914
a(n) = Lucas(4*n+1).
Original entry on oeis.org
1, 11, 76, 521, 3571, 24476, 167761, 1149851, 7881196, 54018521, 370248451, 2537720636, 17393796001, 119218851371, 817138163596, 5600748293801, 38388099893011, 263115950957276, 1803423556807921, 12360848946698171
Offset: 0
- V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers, A Publication of the Fibonacci Association, Houghton Mifflin Co., 1969, pp. 27-29.
-
List([0..30], n-> Lucas(1,-1,4*n+1)[2] ); # G. C. Greubel, Jan 16 2020
-
[Lucas(4*n+1): n in [0..30]]; // G. C. Greubel, Dec 24 2017
-
with(combinat); seq(fibonacci(4*n+2)+fibonacci(4*n), n = 0..30); # G. C. Greubel, Jan 16 2020
-
LucasL[4*Range[0,30]+1] (* or *) LinearRecurrence[{7,-1}, {1,11}, 30] (* G. C. Greubel, Dec 24 2017 *)
-
my(x='x+O('x^30)); Vec((1+4*x)/(1-7*x+x^2)) \\ G. C. Greubel, Dec 24 2017
-
[lucas_number2(4*n+1,1,-1) for n in (0..30)] # G. C. Greubel, Jan 16 2020
A167816
Numerator of x(n) = x(n-1) + x(n-2), x(0)=0, x(1)=1/3; denominator=A167817.
Original entry on oeis.org
0, 1, 1, 2, 1, 5, 8, 13, 7, 34, 55, 89, 48, 233, 377, 610, 329, 1597, 2584, 4181, 2255, 10946, 17711, 28657, 15456, 75025, 121393, 196418, 105937, 514229, 832040, 1346269, 726103, 3524578, 5702887, 9227465, 4976784, 24157817, 39088169, 63245986, 34111385
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Wikipedia, Fibonacci number
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 7, 0, 0, 0, -1).
-
[0,1,1] cat [Numerator(Fibonacci(n)/Fibonacci(2*n-4)): n in [3..40]]; // Vincenzo Librandi, Jun 28 2016
-
Numerator[LinearRecurrence[{1,1},{0,1/3},40]] (* Harvey P. Dale, Dec 07 2014 *)
LinearRecurrence[{0, 0, 0, 7, 0, 0, 0, -1},{0, 1, 1, 2, 1, 5, 8, 13},39] (* Ray Chandler, Aug 03 2015 *)
A134501
a(n) = Fibonacci(7n + 3).
Original entry on oeis.org
2, 55, 1597, 46368, 1346269, 39088169, 1134903170, 32951280099, 956722026041, 27777890035288, 806515533049393, 23416728348467685, 679891637638612258, 19740274219868223167, 573147844013817084101, 16641027750620563662096
Offset: 0
Cf.
A000045,
A001906,
A001519,
A033887,
A015448,
A014445,
A033888,
A033889,
A033890,
A033891,
A102312,
A099100,
A134490-
A134495,
A103134,
A134497 -
A134504.
A134502
a(n) = Fibonacci(7n + 4).
Original entry on oeis.org
3, 89, 2584, 75025, 2178309, 63245986, 1836311903, 53316291173, 1548008755920, 44945570212853, 1304969544928657, 37889062373143906, 1100087778366101931, 31940434634990099905, 927372692193078999176, 26925748508234281076009
Offset: 0
Cf.
A000045,
A001906,
A001519,
A033887,
A015448,
A014445,
A033888,
A033889,
A033890,
A033891,
A102312,
A099100,
A134490-
A134495,
A103134,
A134497-
A134504.
A122070
Triangle given by T(n,k) = Fibonacci(n+k+1)*binomial(n,k) for 0<=k<=n.
Original entry on oeis.org
1, 1, 2, 2, 6, 5, 3, 15, 24, 13, 5, 32, 78, 84, 34, 8, 65, 210, 340, 275, 89, 13, 126, 510, 1100, 1335, 864, 233, 21, 238, 1155, 3115, 5040, 4893, 2639, 610, 34, 440, 2492, 8064, 16310, 21112, 17080, 7896, 1597, 55, 801, 5184, 19572, 47502, 76860, 82908, 57492, 23256, 4181
Offset: 0
Triangle begins:
1;
1, 2;
2, 6, 5;
3, 15, 24, 13;
5, 32, 78, 84, 34;
8, 65, 210, 340, 275, 89;
13, 126, 510, 1100, 1335, 864, 233;
(0, 1, 1, -1, 0, 0, ...) DELTA (1, 1, 1, 0, 0, ...) begins :
1;
0, 1;
0, 1, 2;
0, 2, 6, 5;
0, 3, 15, 24, 13;
0, 5, 32, 78, 84, 34;
0, 8, 65, 210, 340, 275, 89;
0, 13, 126, 510, 1100, 1335, 864, 233;
-
Flat(List([0..10], n-> List([0..n], k-> Binomial(n,k)*Fibonacci(n+ k+1) ))); # G. C. Greubel, Oct 02 2019
-
[Binomial(n,k)*Fibonacci(n+k+1): k in [0..n], n in [0..10]]; // G. C. Greubel, Oct 02 2019
-
with(combinat): seq(seq(binomial(n,k)*fibonacci(n+k+1), k=0..n), n=0..10); # G. C. Greubel, Oct 02 2019
-
Table[Fibonacci[n+k+1]*Binomial[n,k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 02 2019 *)
-
T(n,k) = binomial(n,k)*fibonacci(n+k+1);
for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 02 2019
-
[[binomial(n,k)*fibonacci(n+k+1) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Oct 02 2019
Showing 1-10 of 15 results.
Comments