cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A056854 a(n) = Lucas(4*n).

Original entry on oeis.org

2, 7, 47, 322, 2207, 15127, 103682, 710647, 4870847, 33385282, 228826127, 1568397607, 10749957122, 73681302247, 505019158607, 3461452808002, 23725150497407, 162614600673847, 1114577054219522, 7639424778862807, 52361396397820127, 358890350005878082, 2459871053643326447
Offset: 0

Views

Author

Barry E. Williams, Aug 29 2000

Keywords

Comments

a(n) and b(n) := A004187(n) are the nonnegative proper and improper solutions of the Pell equation a(n)^2 - 5*(3*b(n))^2 = +4. See the cross-reference to A004187 below. - Wolfdieter Lang, Jun 26 2013
Lucas numbers of the form n^2-2. - Michel Lagneau, Aug 11 2014

Examples

			Pell equation: n = 0, 2^2 - 45*0^2 = +4 (improper);  n = 1, 7^2 - 5*(3*1)^2 = +4; n=2, 47^2 - 5*(3*7)^2 = +4. - _Wolfdieter Lang_, Jun 26 2013
		

References

  • R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.

Crossrefs

Cf. quadrisection of A000032: this sequence (first), A056914 (second), A246453 (third, without 11), A288913 (fourth).
Cf. Lucas(k*n): A000032 (k = 1), A005248 (k = 2), A014448 (k = 3), A001946 (k = 5), A087215 (k = 6), A087281 (k = 7), A087265 (k = 8), A087287 (k = 9), A065705 (k = 10), A089772 (k = 11), A089775 (k = 12).

Programs

  • Magma
    [Lucas(4*n): n in [0..100]]; // Vincenzo Librandi, Apr 14 2011
  • Mathematica
    a[0] = 2; a[1] = 7; a[n_] := 7a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 19}] (* Robert G. Wilson v, Jan 30 2004 *)
    LinearRecurrence[{7,-1},{2,7},25] (* or *) LucasL[4*Range[0,25]] (* Harvey P. Dale, Aug 08 2011 *)
  • PARI
    a(n)=if(n<0,0,polsym(1-7*x+x^2,n)[n+1])
    
  • PARI
    a(n)=if(n<0,0,2*subst(poltchebi(n),x,7/2))
    
  • Sage
    [lucas_number2(n,7,1) for n in range(27)] #Zerinvary Lajos, Jun 25 2008
    

Formula

a(n) = 7*a(n-1) - a(n-2) with a(0)=2, a(1)=7.
a(n) = A000032(4*n), where A000032 = Lucas numbers.
a(n) = 7*S(n-1, 7) - 2*S(n-2, 7) = S(n, 7) - S(n-2, 7) = 2*T(n, 7/2), with S(n, x) := U(n, x/2), S(-1, x) := 0, S(-2, x) := -1. U(n, x), resp. T(n, x), are Chebyshev's polynomials of the second, resp. first, kind. S(n-1, 7) = A004187(n), n>=0. See A049310 and A053120.
a(n) = ((7+sqrt(45))/2)^n + ((7-sqrt(45))/2)^n.
G.f.: (2-7x)/(1-7x+x^2).
a(n) = A005248(2*n); bisection of A005248.
a(n) = Fibonacci(8*n)/Fibonacci(4*n), n>0. - Gary Detlefs, Dec 26 2010
a(n) = 2 + 5*Fibonacci(2*n)^2 = 2 + 5*A049684(n), n >= 0. This is in Koshy's book (reference under A065563) 15. on p. 88. Compare with the above Chebyshev T formula. - Wolfdieter Lang, Aug 27 2012
From Peter Bala, Jan 06 2013: (Start)
Let F(x) = Product_{n = 0..inf} (1 + x^(4*n+1))/(1 + x^(4*n+3)). Let alpha = 1/2*(7 - 3*sqrt(5)). This sequence gives the simple continued fraction expansion of 1 + F(alpha) = 2.14242 42709 40138 85949 ... = 2 + 1/(7 + 1/(47 + 1/(322 + ...))).
Also F(-alpha) = 0.85670 72882 04563 14901 ... has the continued fraction representation 1 - 1/(7 - 1/(47 - 1/(322 - ...))) and the simple continued fraction expansion 1/(1 + 1/((7-2) + 1/(1 + 1/((47-2) + 1/(1 + 1/((322-2) + 1/(1 + ...))))))). Cf. A005248.
F(alpha)*F(-alpha) has the simple continued fraction expansion 1/(1 + 1/((7^2-4) + 1/(1 + 1/((47^2-4) + 1/(1 + 1/((322^2-4) + 1/(1 + ...))))))).
Added Oct 13 2019: 1/2 + (1/2)*F(alpha)/F(-alpha) = 1.16675297774947414828... has the simple continued fraction expansion 1 + 1/((7 - 2) + 1/(1 + 1/((322 - 2) + 1/(1 + 1/(15127 - 2) + 1/(1 + ...))))). (End)
a(n) = Fibonacci(4*n+2) - Fibonacci(4*n-2), where Fibonacci(-2) = -1. - Bruno Berselli, May 25 2015
a(n) = sqrt(45*(A004187(n))^2+4).
From Peter Bala, Oct 13 2019: (Start)
a(n) = F(4*n+4)/F(4) - F(4*n-4)/F(4) = A004187(n+1) - A004187(n-1).
a(n) = trace(M^n), where M is the 2 X 2 matrix [0, 1; 1, 1]^4 = [2, 3; 3, 5].
Consequently the Gauss congruences hold: a(n*p^k) = a(n*p^(k-1)) (mod p^k) for all prime p and positive integers n and k. See Zarelua and also Stanley (Ch. 5, Ex. 5.2(a) and its solution).
5*Sum_{n >= 1} 1/(a(n) - 9/a(n)) = 1: (9 = Lucas(4)+2 and 5 = Lucas(4)-2)
9*Sum_{n >= 1} (-1)^(n+1)/(a(n) + 5/a(n)) = 1.
Sum_{n >= 1} 1/a(n) = (1/4)*( theta_3((7-3*sqrt(5))/2)^2 - 1 ), where theta_3(q) = 1 + 2*Sum_{n >= 1} q^n^2. Cf. A153415.
Sum_{n >= 1} (-1)^(n+1)/a(n) = (1/4)*( 1 - theta_3((3*sqrt(5)-7)/2)^2 ).
x*exp(Sum_{n >= 1} a(n)*x^/n) = x + 7*x^2 + 48*x^3 + 329*x^4 + ... is the o.g.f. for A004187. (End)
E.g.f.: 2*exp(7*x/2)*cosh(3*sqrt(5)*x/2). - Stefano Spezia, Oct 18 2019
a(2k+1)/7 is the numerator of the continued fraction [3*sqrt(5), 3*sqrt(5), ..., 3*sqrt(5)] with 2k copies of 3*sqrt(5), for k>0. - Greg Dresden and Tracy Z. Wu, Sep 10 2020
a(n) = Sum_{k>=1} Lucas(2*n*k)/(Lucas(2*n)^k). - Diego Rattaggi, Jan 20 2025

Extensions

More terms from James Sellers, Aug 31 2000
Chebyshev comments from Wolfdieter Lang, Oct 31 2002

A246453 Lucas numbers (A000204) of the form n^2 + 2.

Original entry on oeis.org

3, 11, 18, 123, 843, 5778, 39603, 271443, 1860498, 12752043, 87403803, 599074578, 4106118243, 28143753123, 192900153618, 1322157322203, 9062201101803, 62113250390418, 425730551631123, 2918000611027443, 20000273725560978, 137083915467899403, 939587134549734843
Offset: 1

Views

Author

Michel Lagneau, Aug 26 2014

Keywords

Comments

a(n) = {11} union {A000204(2+4*n)} for n=0,1,...
Intersection of A000204 and A059100. - Michel Marcus, Aug 26 2014

Crossrefs

Cf. A000204 (Lucas), A059100 (n^2+2).
Cf. quadrisection of A000032: A056854 (first), A056914 (second), this sequence (third, without 11), A288913 (fourth).

Programs

  • Magma
    I:=[3,11,18,123]; [n le 4 select I[n] else 7*Self(n-1)-Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 21 2017
  • Maple
    with(combinat,fibonacci):lst:={}:lst1:={}:nn:=5000:
      for n from 1 to nn do:
        lst:=lst union {2*fibonacci(n-1)+fibonacci(n)}:
      od:
       for m from 1 to nn do:
        if {m^2+2} intersect lst = {m^2+2}
        then
        lst1:=lst1 union {m^2+2}:
        else
        fi:
       od:
       print(lst1):
  • Mathematica
    CoefficientList[Series[x*(3-10*x-56*x^2+8*x^3)/(1-7*x+x^2), {x,0,50}], x] (* or *) LinearRecurrence[{7,-1}, {3, 11, 18, 123}, 30] (* G. C. Greubel, Dec 21 2017 *)
    Select[LucasL[Range[100]],IntegerQ[Sqrt[#-2]]&] (* Harvey P. Dale, Dec 31 2018 *)
  • PARI
    lista(nn) = for (n=0, nn, luc = fibonacci(n+1) + fibonacci(n-1); if (issquare(luc-2), print1(luc, ", "))); \\ Michel Marcus, Mar 29 2016
    
  • PARI
    Vec(x*(3 - 10*x - 56*x^2 + 8*x^3) / (1 - 7*x + x^2) + O(x^30)) \\ Colin Barker, Jun 20 2017
    

Formula

From Colin Barker, Jun 20 2017: (Start)
G.f.: x*(3 - 10*x - 56*x^2 + 8*x^3) / (1 - 7*x + x^2).
a(n) = (2^(-n)*((7+3*sqrt(5))^n*(-20+9*sqrt(5)) + (7-3*sqrt(5))^n*(20+9*sqrt(5)))) / sqrt(5) for n>2.
a(n) = 7*a(n-1) - a(n-2) for n>4. (End)
E.g.f.: 2*exp(7*x/2)*(9*cosh(3*sqrt(5)*x/2) - 4*sqrt(5)*sinh(3*sqrt(5)*x/2)) + 4*x^2 - 18. - Stefano Spezia, Apr 14 2025

Extensions

Corrected by Michel Marcus, Mar 29 2016

A288913 a(n) = Lucas(4*n + 3).

Original entry on oeis.org

4, 29, 199, 1364, 9349, 64079, 439204, 3010349, 20633239, 141422324, 969323029, 6643838879, 45537549124, 312119004989, 2139295485799, 14662949395604, 100501350283429, 688846502588399, 4721424167835364, 32361122672259149, 221806434537978679, 1520283919093591604
Offset: 0

Views

Author

Bruno Berselli, Jun 19 2017

Keywords

Comments

a(n) mod 4 gives A101000.

Crossrefs

Cf. A033891: fourth quadrisection of A000045.
Partial sums are in A081007 (after 0).
Positive terms of A098149, and subsequence of A001350, A002878, A016897, A093960, A068397.
Quadrisection of A000032: A056854 (first), A056914 (second), A246453 (third, without 11), this sequence (fourth).

Programs

  • Magma
    [Lucas(4*n + 3): n in [0..30]]; // G. C. Greubel, Dec 22 2017
    
  • Mathematica
    LucasL[4 Range[0, 21] + 3]
    LinearRecurrence[{7,-1}, {4,29}, 30] (* G. C. Greubel, Dec 22 2017 *)
  • PARI
    Vec((4 + x)/(1 - 7*x + x^2) + O(x^30)) \\ Colin Barker, Jun 20 2017
    
  • Python
    from sympy import lucas
    def a(n):  return lucas(4*n + 3)
    print([a(n) for n in range(22)]) # Michael S. Branicky, Apr 29 2021
  • Sage
    def L():
        x, y = -1, 4
        while True:
            yield y
            x, y = y, 7*y - x
    r = L(); [next(r) for  in (0..21)] # _Peter Luschny, Jun 20 2017
    

Formula

G.f.: (4 + x)/(1 - 7*x + x^2).
a(n) = 7*a(n-1) - a(n-2) for n>1, with a(0)=4, a(1)=29.
a(n) = ((sqrt(5) + 1)^(4*n + 3) - (sqrt(5) - 1)^(4*n + 3))/(8*16^n).
a(n) = Fibonacci(4*n+4) + Fibonacci(4*n+2).
a(n) = 4*A004187(n+1) + A004187(n).
a(n) = 5*A003482(n) + 4 = 5*A081016(n) - 1.
a(n) = A002878(2*n+1) = A093960(2*n+3) = A001350(4*n+3) = A068397(4*n+3).
a(n+1)*a(n+k) - a(n)*a(n+k+1) = 15*Fibonacci(4*k). Example: for k=6, a(n+1)*a(n+6) - a(n)*a(n+7) = 15*Fibonacci(24) = 695520.

A207607 Triangle of coefficients of polynomials v(n,x) jointly generated with A207606; see Formula section.

Original entry on oeis.org

1, 1, 2, 1, 5, 2, 1, 9, 9, 2, 1, 14, 25, 13, 2, 1, 20, 55, 49, 17, 2, 1, 27, 105, 140, 81, 21, 2, 1, 35, 182, 336, 285, 121, 25, 2, 1, 44, 294, 714, 825, 506, 169, 29, 2, 1, 54, 450, 1386, 2079, 1716, 819, 225, 33, 2, 1, 65, 660, 2508, 4719, 5005, 3185, 1240, 289, 37, 2
Offset: 1

Views

Author

Clark Kimberling, Feb 19 2012

Keywords

Comments

Subtriangle of the triangle T(n,k) given by (1, 0, 1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 03 2012

Examples

			First five rows:
  1;
  1,  2;
  1,  5,  2;
  1,  9,  9,  2;
  1, 14, 25, 13,  2;
Triangle (1, 0, 1/2, 1/2, 0, 0, 0, ...) DELTA (0, 2, -1, 0, 0, 0, 0, ...) begins:
  1;
  1,  0;
  1,  2,  0;
  1,  5,  2,  0;
  1,  9,  9,  2,  0;
  1, 14, 25, 13,  2,  0;
  1, 20, 55, 49, 17,  2,  0;
  ...
1 = 2*1 - 1, 20 = 2*14 + 1 - 9, 55 = 2*25 + 14 - 9, 49 = 2*13 + 25 - 2, 17 = 2*2 + 1 - 0, 2 = 2*0 + 2 - 0. - _Philippe Deléham_, Mar 03 2012
		

Crossrefs

Cf. A207606.

Programs

  • Maple
    A207607:= (n,k) -> `if`(k=1, 1, binomial(n+k-3, 2*k-2) + 2*binomial(n+k-3, 2*k-3) ); seq(seq(A207607(n, k), k = 1..n), n = 1..10); # G. C. Greubel, Mar 15 2020
  • Mathematica
    (* First program *)
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + v[n - 1, x]
    v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x]
    Table[Factor[u[n, x]], {n, 1, z}]
    Table[Factor[v[n, x]], {n, 1, z}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A207606 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A207607 *)
    (* Second program *)
    Table[If[k==1, 1, Binomial[n+k-3, 2*k-2] + 2*Binomial[n+k-3, 2*k-3]], {n, 10}, {k, n}]//Flatten (* G. C. Greubel, Mar 15 2020 *)
  • Python
    from sympy import Poly
    from sympy.abc import x
    def u(n, x): return 1 if n==1 else u(n - 1, x) + v(n - 1, x)
    def v(n, x): return 1 if n==1 else x*u(n - 1, x) + (x + 1)*v(n - 1, x)
    def a(n): return Poly(v(n, x), x).all_coeffs()[::-1]
    for n in range(1, 13): print(a(n)) # Indranil Ghosh, May 28 2017
    
  • Sage
    def T(n, k):
        if k == 1: return 1
        else: return binomial(n+k-3, 2*k-2) + 2*binomial(n+k-3, 2*k-3)
    [[T(n, k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Mar 15 2020

Formula

u(n,x) = u(n-1,x) + v(n-1,x), v(n,x) = x*u(n-1,x) + (x+1)v(n-1,x), where u(1,x)=1, v(1,x)=1.
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k). - Philippe Deléham, Mar 03 2012
G.f.: (1-x+y*x)/(1-(y+2)*x+x^2). - Philippe Deléham, Mar 03 2012
For n >= 1, Sum{k=0..n} T(n,k)*x^k = A000012(n), A001906(n), A001834(n-1), A055271(n-1), A038761(n-1), A056914(n-1) for x = 0, 1, 2, 3, 4, 5 respectively. - Philippe Deléham, Mar 03 2012
T(n,k) = C(n+k-1,2*k) + 2*C(n+k-1,2*k-1). where C is binomial. - Yuchun Ji, May 23 2019
T(n,k) = T(n-1,k) + A207606(n,k-1). - Yuchun Ji, May 28 2019
Sum_{k=1..n} T(n, k)*x^k = { 4*(-1)^(n-1)*A016921(n-1) (x=-4), 3*(-1)^(n-1) * A130815(n-1) (x=-3), 2*(-1)^(n-1)*A010684(n-1) (x=-2), A057079(n+1) (x=-1), 0 (x=0), A001906(n) = Fibonacci(2*n) (x=1), 2*A001834(n-1) (x=2), 3*A055271(n-1) (x=3), 4*A038761(n-1) (x=4) }. - G. C. Greubel, Mar 15 2020

A354336 a(n) is the integer w such that (L(2*n)^2, -L(2*n-1)^2, -w) is a primitive solution to the Diophantine equation 2*x^3 + 2*y^3 + z^3 = 125, where L(n) is the n-th Lucas number (A000032).

Original entry on oeis.org

1, 11, 61, 401, 2731, 18701, 128161, 878411, 6020701, 41266481, 282844651, 1938646061, 13287677761, 91075098251, 624238009981, 4278590971601, 29325898791211, 201002700566861, 1377693005176801, 9442848335670731, 64722245344518301, 443612869075957361
Offset: 0

Views

Author

XU Pingya, Jun 20 2022

Keywords

Comments

Subsequence of A017281.

Examples

			2*(L(4)^2)^3 + 2*(-L(3)^2)^3 + (-61)^3 = 2*(49)^3 + 2*(-1)^3 + (-61)^3 = 125, a(2) = 61.
		

Crossrefs

Programs

  • Mathematica
    LucasL[4*Range[22]-3] + 1 - LucasL[2*Range[22]-3]^2

Formula

a(n) = (-125 + 2*A005248(n)^6 - 2*A002878(n-1)^6)^(1/3).
a(n) = Lucas(4*n+1) - Lucas(4*n-2) + 3 = A056914(n) - 15*A092521(n-1), for n > 1.
a(n) = Lucas(4*n+1) + 1 - Lucas(2*n-1)^2.
a(n) = 2*A081015(n-1) + 1.
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
G.f.: (1 + 3*x - 19*x^2)/((1 - x)*(1 - 7*x + x^2)). - Stefano Spezia, Jun 22 2022
a(n) = (F(2*n+1) + F(2*n-1))^2 + (F(2*n+1) + F(2*n-1)) * (F(2*n-1) + F(2*n-3)) - (F(2*n-1) + F(2*n-3))^2. - XU Pingya, Jul 17 2024

A354337 a(n) is the integer w such that (L(2*n)^2, -L(2*n + 1)^2, w) is a primitive solution to the Diophantine equation 2*x^3 + 2*y^3 + z^3 = 125, where L(n) is the n-th Lucas number (A000032).

Original entry on oeis.org

19, 149, 1039, 7139, 48949, 335519, 2299699, 15762389, 108037039, 740496899, 5075441269, 34787591999, 238437702739, 1634276327189, 11201496587599, 76776199786019, 526231901914549, 3606847113615839, 24721697893396339, 169445038140158549, 1161393569087713519
Offset: 1

Views

Author

XU Pingya, Jun 20 2022

Keywords

Comments

Subsequence of A017377.

Examples

			2*(L(4)^2)^3 + 2*(-L(5)^2)^3 + (149)^3 = 2*(49)^3 + 2*(-121)^3 + (149)^3 = 125, a(2) = 149.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{7,-1},{19,149},21]-1 + LucasL[2*Range[21]-3]^2

Formula

a(n) = (125 - 2*A005248(n)^6 + 2*A002878(n)^6)^(1/3).
a(n) = Lucas(4*n+2) + Lucas(4n-1) - 3 = 2*A056914(n)-3 = 15*A092521(n) + A288913(n-1).
a(n) = 2*A081017(n) - 1.
a(n) = 10*A089508(n) + 9.
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
G.f.: x*(19 - 3*x - x^2)/((1 - x)*(1 - 7*x + x^2)). - Stefano Spezia, Jun 22 2022

A081013 a(n) = Fibonacci(4*n+3) - 2, or Fibonacci(2*n)*Lucas(2*n+3).

Original entry on oeis.org

0, 11, 87, 608, 4179, 28655, 196416, 1346267, 9227463, 63245984, 433494435, 2971215071, 20365011072, 139583862443, 956722026039, 6557470319840, 44945570212851, 308061521170127, 2111485077978048, 14472334024676219
Offset: 0

Views

Author

R. K. Guy, Mar 01 2003

Keywords

References

  • Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75.

Crossrefs

Cf. A000045 (Fibonacci numbers), A000032 (Lucas numbers), A322159.

Programs

  • GAP
    List([0..40], n-> Fibonacci(4*n+3) -2); # G. C. Greubel, Jul 14 2019
  • Magma
    [Fibonacci(4*n+3)-2: n in [0..40]]; // Vincenzo Librandi, Apr 20 2011
    
  • Magma
    [Fibonacci(4*n+3)-2: n in [0..40]]; // G. C. Greubel, Jul 14 2019
    
  • Maple
    with(combinat) for n from 0 to 40 do printf(`%d,`,fibonacci(4*n+3)-2) od # James Sellers, Mar 03 2003
  • Mathematica
    LinearRecurrence[{8,-8,1},{0,11,87},40] (* Harvey P. Dale, Dec 05 2013 *)
    Table[Fibonacci[2n] LucasL[2n+3], {n,1,40}] (* Rigoberto Florez, Apr 20 2019 *)
    Table[Sum[Binomial[2n-1+i, 2n-1-i], {i, 1, 2n-1}]-1, {n, 1, 40}] (* Rigoberto Florez, Apr 20 2019 *)
  • PARI
    my(x='x+O('x^40)); concat([0], Vec(x*(11-x)/((1-x)*(1-7*x+x^2)))) \\ G. C. Greubel, Dec 24 2017
    
  • PARI
    vector(40, n, n--; fibonacci(4*n+3)-2) \\ G. C. Greubel, Jul 14 2019
    
  • Sage
    [fibonacci(4*n+3)-2 for n in (0..40)] # G. C. Greubel, Jul 14 2019
    

Formula

a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
From R. J. Mathar, Sep 03 2010: (Start)
G.f.: x*(11 - x)/((1-x)*(1-7*x+x^2)).
a(n) = A033891(n) - 2.
a(n+1) - a(n) = A056914(n+1), n>0. (End)
a(n) = 7*a(n-1) - a(n-2) + 10, n>=2. - R. J. Mathar, Nov 07 2015
From Rigoberto Florez, Apr 20 2019: (Start)
a(n) = Sum_{i=0..2n} F(i)*L(i+2), F(i) = A000045(i) and L(i) = A000032(i).
a(n) = (Sum_{i=1..2n-1} binomial(2n-1+i,2n-1-i)) - 1. (End)
Product_{n>=1} (1 + 1/a(n)) = 2*(1-1/sqrt(5)) = 2*A322159. - Amiram Eldar, Nov 28 2024

A081014 a(n) = Lucas(4*n+1) + 1, or Lucas(2*n)*Lucas(2*n+1).

Original entry on oeis.org

2, 12, 77, 522, 3572, 24477, 167762, 1149852, 7881197, 54018522, 370248452, 2537720637, 17393796002, 119218851372, 817138163597, 5600748293802, 38388099893012, 263115950957277, 1803423556807922, 12360848946698172
Offset: 0

Views

Author

R. K. Guy, Mar 01 2003

Keywords

References

  • Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75.

Crossrefs

Cf. A000045 (Fibonacci numbers), A000032 (Lucas numbers).

Programs

  • GAP
    List([0..20], n-> Lucas(1,-1,4*n+1)[2] +1); # G. C. Greubel, Jul 14 2019
  • Magma
    I:=[2,12,77]; [n le 3 select I[n] else 8*Self(n-1) - 8*Self(n-2) + Self(n-3): n in [0..30]]; // G. C. Greubel, Dec 24 2017
    
  • Maple
    luc := proc(n) option remember: if n=0 then RETURN(2) fi: if n=1 then RETURN(1) fi: luc(n-1)+luc(n-2): end: for n from 0 to 25 do printf(`%d,`,luc(4*n+1)+1) od: # James Sellers, Mar 03 2003
  • Mathematica
    LinearRecurrence[{8,-8,1}, {2,12,77}, 20] (* G. C. Greubel, Dec 24 2017 *)
    LucasL[4*Range[0,20] +1] +1 (* G. C. Greubel, Jul 14 2019 *)
    CoefficientList[Series[(2-4x-3x^2)/((1-x)(1-7x+x^2)),{x,0,30}],x] (* Harvey P. Dale, Aug 27 2021 *)
  • PARI
    vector(20, n, n--; f=fibonacci; f(4*n+2)+f(4*n)+1) \\ G. C. Greubel, Dec 24 2017
    
  • Sage
    [lucas_number2(4*n+1,1,-1) +1 for n in (0..20)] # G. C. Greubel, Jul 14 2019
    

Formula

a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
From R. J. Mathar, Sep 03 2010: (Start)
G.f.: (2 -4*x -3*x^2)/((1-x)*(1-7*x+x^2)).
a(n) = 1 + A056914(n). (End)
a(n) = 7*a(n-1) - a(n-2) - 5, n >= 2. - R. J. Mathar, Nov 07 2015
Showing 1-8 of 8 results.