cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A056854 a(n) = Lucas(4*n).

Original entry on oeis.org

2, 7, 47, 322, 2207, 15127, 103682, 710647, 4870847, 33385282, 228826127, 1568397607, 10749957122, 73681302247, 505019158607, 3461452808002, 23725150497407, 162614600673847, 1114577054219522, 7639424778862807, 52361396397820127, 358890350005878082, 2459871053643326447
Offset: 0

Views

Author

Barry E. Williams, Aug 29 2000

Keywords

Comments

a(n) and b(n) := A004187(n) are the nonnegative proper and improper solutions of the Pell equation a(n)^2 - 5*(3*b(n))^2 = +4. See the cross-reference to A004187 below. - Wolfdieter Lang, Jun 26 2013
Lucas numbers of the form n^2-2. - Michel Lagneau, Aug 11 2014

Examples

			Pell equation: n = 0, 2^2 - 45*0^2 = +4 (improper);  n = 1, 7^2 - 5*(3*1)^2 = +4; n=2, 47^2 - 5*(3*7)^2 = +4. - _Wolfdieter Lang_, Jun 26 2013
		

References

  • R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.

Crossrefs

Cf. quadrisection of A000032: this sequence (first), A056914 (second), A246453 (third, without 11), A288913 (fourth).
Cf. Lucas(k*n): A000032 (k = 1), A005248 (k = 2), A014448 (k = 3), A001946 (k = 5), A087215 (k = 6), A087281 (k = 7), A087265 (k = 8), A087287 (k = 9), A065705 (k = 10), A089772 (k = 11), A089775 (k = 12).

Programs

  • Magma
    [Lucas(4*n): n in [0..100]]; // Vincenzo Librandi, Apr 14 2011
  • Mathematica
    a[0] = 2; a[1] = 7; a[n_] := 7a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 19}] (* Robert G. Wilson v, Jan 30 2004 *)
    LinearRecurrence[{7,-1},{2,7},25] (* or *) LucasL[4*Range[0,25]] (* Harvey P. Dale, Aug 08 2011 *)
  • PARI
    a(n)=if(n<0,0,polsym(1-7*x+x^2,n)[n+1])
    
  • PARI
    a(n)=if(n<0,0,2*subst(poltchebi(n),x,7/2))
    
  • Sage
    [lucas_number2(n,7,1) for n in range(27)] #Zerinvary Lajos, Jun 25 2008
    

Formula

a(n) = 7*a(n-1) - a(n-2) with a(0)=2, a(1)=7.
a(n) = A000032(4*n), where A000032 = Lucas numbers.
a(n) = 7*S(n-1, 7) - 2*S(n-2, 7) = S(n, 7) - S(n-2, 7) = 2*T(n, 7/2), with S(n, x) := U(n, x/2), S(-1, x) := 0, S(-2, x) := -1. U(n, x), resp. T(n, x), are Chebyshev's polynomials of the second, resp. first, kind. S(n-1, 7) = A004187(n), n>=0. See A049310 and A053120.
a(n) = ((7+sqrt(45))/2)^n + ((7-sqrt(45))/2)^n.
G.f.: (2-7x)/(1-7x+x^2).
a(n) = A005248(2*n); bisection of A005248.
a(n) = Fibonacci(8*n)/Fibonacci(4*n), n>0. - Gary Detlefs, Dec 26 2010
a(n) = 2 + 5*Fibonacci(2*n)^2 = 2 + 5*A049684(n), n >= 0. This is in Koshy's book (reference under A065563) 15. on p. 88. Compare with the above Chebyshev T formula. - Wolfdieter Lang, Aug 27 2012
From Peter Bala, Jan 06 2013: (Start)
Let F(x) = Product_{n = 0..inf} (1 + x^(4*n+1))/(1 + x^(4*n+3)). Let alpha = 1/2*(7 - 3*sqrt(5)). This sequence gives the simple continued fraction expansion of 1 + F(alpha) = 2.14242 42709 40138 85949 ... = 2 + 1/(7 + 1/(47 + 1/(322 + ...))).
Also F(-alpha) = 0.85670 72882 04563 14901 ... has the continued fraction representation 1 - 1/(7 - 1/(47 - 1/(322 - ...))) and the simple continued fraction expansion 1/(1 + 1/((7-2) + 1/(1 + 1/((47-2) + 1/(1 + 1/((322-2) + 1/(1 + ...))))))). Cf. A005248.
F(alpha)*F(-alpha) has the simple continued fraction expansion 1/(1 + 1/((7^2-4) + 1/(1 + 1/((47^2-4) + 1/(1 + 1/((322^2-4) + 1/(1 + ...))))))).
Added Oct 13 2019: 1/2 + (1/2)*F(alpha)/F(-alpha) = 1.16675297774947414828... has the simple continued fraction expansion 1 + 1/((7 - 2) + 1/(1 + 1/((322 - 2) + 1/(1 + 1/(15127 - 2) + 1/(1 + ...))))). (End)
a(n) = Fibonacci(4*n+2) - Fibonacci(4*n-2), where Fibonacci(-2) = -1. - Bruno Berselli, May 25 2015
a(n) = sqrt(45*(A004187(n))^2+4).
From Peter Bala, Oct 13 2019: (Start)
a(n) = F(4*n+4)/F(4) - F(4*n-4)/F(4) = A004187(n+1) - A004187(n-1).
a(n) = trace(M^n), where M is the 2 X 2 matrix [0, 1; 1, 1]^4 = [2, 3; 3, 5].
Consequently the Gauss congruences hold: a(n*p^k) = a(n*p^(k-1)) (mod p^k) for all prime p and positive integers n and k. See Zarelua and also Stanley (Ch. 5, Ex. 5.2(a) and its solution).
5*Sum_{n >= 1} 1/(a(n) - 9/a(n)) = 1: (9 = Lucas(4)+2 and 5 = Lucas(4)-2)
9*Sum_{n >= 1} (-1)^(n+1)/(a(n) + 5/a(n)) = 1.
Sum_{n >= 1} 1/a(n) = (1/4)*( theta_3((7-3*sqrt(5))/2)^2 - 1 ), where theta_3(q) = 1 + 2*Sum_{n >= 1} q^n^2. Cf. A153415.
Sum_{n >= 1} (-1)^(n+1)/a(n) = (1/4)*( 1 - theta_3((3*sqrt(5)-7)/2)^2 ).
x*exp(Sum_{n >= 1} a(n)*x^/n) = x + 7*x^2 + 48*x^3 + 329*x^4 + ... is the o.g.f. for A004187. (End)
E.g.f.: 2*exp(7*x/2)*cosh(3*sqrt(5)*x/2). - Stefano Spezia, Oct 18 2019
a(2k+1)/7 is the numerator of the continued fraction [3*sqrt(5), 3*sqrt(5), ..., 3*sqrt(5)] with 2k copies of 3*sqrt(5), for k>0. - Greg Dresden and Tracy Z. Wu, Sep 10 2020
a(n) = Sum_{k>=1} Lucas(2*n*k)/(Lucas(2*n)^k). - Diego Rattaggi, Jan 20 2025

Extensions

More terms from James Sellers, Aug 31 2000
Chebyshev comments from Wolfdieter Lang, Oct 31 2002

A056914 a(n) = Lucas(4*n+1).

Original entry on oeis.org

1, 11, 76, 521, 3571, 24476, 167761, 1149851, 7881196, 54018521, 370248451, 2537720636, 17393796001, 119218851371, 817138163596, 5600748293801, 38388099893011, 263115950957276, 1803423556807921, 12360848946698171
Offset: 0

Views

Author

Barry E. Williams, Jul 11 2000

Keywords

Comments

a(n) = (t(i+4n+1) - t(i))/(t(i+2n+1) - t(i+2n)), where (t) is any sequence of the form t(n+2) = 4t(n+1) - 4t(n) + t(n-1) or of the form t(n+1) = 3t(n) - t(n-1) without regard to initial values as long as t(i+2n+1) - t(i+2n) != 0. - Klaus Purath, Jun 24 2024

References

  • V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers, A Publication of the Fibonacci Association, Houghton Mifflin Co., 1969, pp. 27-29.

Crossrefs

Cf. (A056914) = sqrt{5*(A033889)^2 - 4}.
Cf. quadrisection of A000032: A056854 (first), this sequence (second), A246453 (third, without 11), A288913 (fourth).

Programs

  • GAP
    List([0..30], n-> Lucas(1,-1,4*n+1)[2] ); # G. C. Greubel, Jan 16 2020
  • Magma
    [Lucas(4*n+1): n in [0..30]]; // G. C. Greubel, Dec 24 2017
    
  • Maple
    with(combinat); seq(fibonacci(4*n+2)+fibonacci(4*n), n = 0..30); # G. C. Greubel, Jan 16 2020
  • Mathematica
    LucasL[4*Range[0,30]+1] (* or *) LinearRecurrence[{7,-1}, {1,11}, 30] (* G. C. Greubel, Dec 24 2017 *)
  • PARI
    my(x='x+O('x^30)); Vec((1+4*x)/(1-7*x+x^2)) \\ G. C. Greubel, Dec 24 2017
    
  • Sage
    [lucas_number2(4*n+1,1,-1) for n in (0..30)] # G. C. Greubel, Jan 16 2020
    

Formula

a(n) = 7*a(n-1) - a(n-2), with a(0)=1, a(1)=11.
a(n) = (11*(((7+3*sqrt(5))/2)^n - ((7-3*sqrt(5))/2)^n) - (((7+3*sqrt(5))/2)^(n-1) - ((7-3*sqrt(5))/2)^(n-1)))/3*sqrt(5).
G.f.: (1+4*x)/(1-7*x+x^2). - Philippe Deléham, Nov 02 2008

A105531 Decimal expansion of arctan(1/3).

Original entry on oeis.org

3, 2, 1, 7, 5, 0, 5, 5, 4, 3, 9, 6, 6, 4, 2, 1, 9, 3, 4, 0, 1, 4, 0, 4, 6, 1, 4, 3, 5, 8, 6, 6, 1, 3, 1, 9, 0, 2, 0, 7, 5, 5, 2, 9, 5, 5, 5, 7, 6, 5, 6, 1, 9, 1, 4, 3, 2, 8, 0, 3, 0, 5, 9, 3, 5, 6, 7, 5, 6, 2, 3, 7, 4, 0, 5, 8, 1, 0, 5, 4, 4, 3, 5, 6, 4, 0, 8, 4, 2, 2, 3, 5, 0, 6, 4, 1, 3, 7, 4, 4, 3, 9, 0, 0, 7
Offset: 0

Views

Author

Bryan Jacobs (bryanjj(AT)gmail.com), Apr 12 2005

Keywords

Comments

arctan(1/3) + A073000 = 2*arctan(1/3) + A105533 = Pi/4.

Examples

			0.3217505543966421934014046143...
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 242.

Crossrefs

Cf. A003881 (Pi/4), A073000 (arctan(1/2)), A105533 (arctan(1/7)).

Programs

Formula

From Peter Bala, Feb 04 2015: (Start)
Equals (1/3)*Sum_{k >= 0} (-1)^k/((2*k + 1)*9^k).
Define a pair of integer sequences A(n) = 9^n*(2*n + 1)!/n! and B(n) = A(n)*Sum_{k = 0..n} (-1)^k/((2*k + 1)*9^k). Both sequences satisfy the same recurrence equation u(n) = (32*n + 20)*u(n-1) + 36*(2*n - 1)^2*u(n-2). From this observation we find the continued fraction expansion arctan(1/3) = (1/3)*(1 - 2/(54 + 36*3^2/(84 + 36*5^2/(116 + ... + 36*(2*n - 1)^2/((32*n + 20) + ...))))).
Equals (3/10) * Sum_{k >= 0} (2/5)^k/( (2*k + 1)*binomial(2*k,k) ).
Define a pair of integer sequences C(n) = 10^n*(2*n + 1)!/n! and D(n) = C(n)*Sum_{k = 0..n} (2/5)^k/( (2*k + 1)*binomial(2*k,k) ). Both sequences satisfy the same recurrence equation u(n) = (44*n + 20)*u(n-1) - 80*n*(2*n - 1)*u(n-2). From this observation we obtain the continued fraction expansion arctan(1/3) = (3/10)*( 1 + 4/(60 - 480/(108 - 1200/(152 - ... - 80*n*(2*n - 1)/((44*n + 20) - ...))))). (End)
Equals Sum_{k>=1} arctan(L(4*k+2)/F(4*k+2)^2) where L=A000032 and F=A000045. See also A033890 and A246453. - Michel Marcus, Mar 29 2016 [corrected by Jason Yuen, Jan 18 2025]
From Amiram Eldar, Aug 09 2020: (Start)
Equals Sum_{k>=2} arctan(1/(2*k^2)) = Sum_{k>=2} (-1)^k arctan(2/k^2).
Equals Integral_{x=1..2} 1/(x^2 + 1) dx. (End)
Equals Sum_{n>=0} arctan(1/F(2*n+5)) = Sum_{n>=0} (-1)^n arctan(F(2*n+1)) where F=A000045. - Gleb Koloskov, Oct 01 2021

A288913 a(n) = Lucas(4*n + 3).

Original entry on oeis.org

4, 29, 199, 1364, 9349, 64079, 439204, 3010349, 20633239, 141422324, 969323029, 6643838879, 45537549124, 312119004989, 2139295485799, 14662949395604, 100501350283429, 688846502588399, 4721424167835364, 32361122672259149, 221806434537978679, 1520283919093591604
Offset: 0

Views

Author

Bruno Berselli, Jun 19 2017

Keywords

Comments

a(n) mod 4 gives A101000.

Crossrefs

Cf. A033891: fourth quadrisection of A000045.
Partial sums are in A081007 (after 0).
Positive terms of A098149, and subsequence of A001350, A002878, A016897, A093960, A068397.
Quadrisection of A000032: A056854 (first), A056914 (second), A246453 (third, without 11), this sequence (fourth).

Programs

  • Magma
    [Lucas(4*n + 3): n in [0..30]]; // G. C. Greubel, Dec 22 2017
    
  • Mathematica
    LucasL[4 Range[0, 21] + 3]
    LinearRecurrence[{7,-1}, {4,29}, 30] (* G. C. Greubel, Dec 22 2017 *)
  • PARI
    Vec((4 + x)/(1 - 7*x + x^2) + O(x^30)) \\ Colin Barker, Jun 20 2017
    
  • Python
    from sympy import lucas
    def a(n):  return lucas(4*n + 3)
    print([a(n) for n in range(22)]) # Michael S. Branicky, Apr 29 2021
  • Sage
    def L():
        x, y = -1, 4
        while True:
            yield y
            x, y = y, 7*y - x
    r = L(); [next(r) for  in (0..21)] # _Peter Luschny, Jun 20 2017
    

Formula

G.f.: (4 + x)/(1 - 7*x + x^2).
a(n) = 7*a(n-1) - a(n-2) for n>1, with a(0)=4, a(1)=29.
a(n) = ((sqrt(5) + 1)^(4*n + 3) - (sqrt(5) - 1)^(4*n + 3))/(8*16^n).
a(n) = Fibonacci(4*n+4) + Fibonacci(4*n+2).
a(n) = 4*A004187(n+1) + A004187(n).
a(n) = 5*A003482(n) + 4 = 5*A081016(n) - 1.
a(n) = A002878(2*n+1) = A093960(2*n+3) = A001350(4*n+3) = A068397(4*n+3).
a(n+1)*a(n+k) - a(n)*a(n+k+1) = 15*Fibonacci(4*k). Example: for k=6, a(n+1)*a(n+6) - a(n)*a(n+7) = 15*Fibonacci(24) = 695520.

A342710 Solutions x to the Pell-Fermat equation x^2 - 5*y^2 = 4.

Original entry on oeis.org

3, 18, 123, 843, 5778, 39603, 271443, 1860498, 12752043, 87403803, 599074578, 4106118243, 28143753123, 192900153618, 1322157322203, 9062201101803, 62113250390418, 425730551631123, 2918000611027443, 20000273725560978, 137083915467899403, 939587134549734843
Offset: 0

Views

Author

Bernard Schott, Mar 19 2021

Keywords

Comments

This Pell equation is used to find the 12-gonal square numbers (see A342709).
The corresponding solutions y are in A033890.
Essentially the same as A246453. - R. J. Mathar, Mar 24 2021

Examples

			a(1)^2 - 5 * A033890(1)^2 = 18^2 - 5 * 8^2 = 4.
		

Crossrefs

a(n) = 3*A049685(n). - Hugo Pfoertner, Mar 19 2021

Programs

  • Mathematica
    LinearRecurrence[{7, -1}, {3, 18}, 20] (* Amiram Eldar, Mar 19 2021 *)
    Table[2 ChebyshevT[2 n + 1, 3/2], {n, 0, 20}] (* Eric W. Weisstein, Sep 02 2025 *)
    Table[2 Cos[(2 n + 1) ArcCos[3/2]], {n, 0, 20}] // FunctionExpand (* Eric W. Weisstein, Sep 02 2025 *)

Formula

a(n) = 7*a(n-1) - a(n-2).
a(n) = 2*T(2*n+1, 3/2), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. - Peter Bala, Jul 02 2022
From Stefano Spezia, Apr 14 2025: (Start)
G.f.: 3*(1 - x)/(1 - 7*x + x^2).
E.g.f.: exp(7*x/2)*(3*cosh(3*sqrt(5)*x/2) + sqrt(5)*sinh(3*sqrt(5)*x/2)). (End)
a(n) = 2*cos((2*n+1)*arccos(3/2)). - Eric W. Weisstein, Sep 02 2025

A351222 Decimal expansion of Sum_{k>=0} (-1)^k/Fibonacci(4*k+2).

Original entry on oeis.org

8, 9, 0, 8, 6, 7, 0, 2, 1, 9, 7, 2, 1, 1, 8, 2, 6, 0, 0, 4, 8, 8, 5, 1, 5, 2, 9, 2, 4, 1, 5, 6, 8, 0, 2, 0, 4, 3, 0, 5, 1, 2, 8, 4, 4, 1, 5, 8, 2, 0, 4, 3, 4, 5, 6, 6, 2, 0, 8, 0, 2, 7, 1, 9, 7, 5, 5, 2, 1, 5, 5, 6, 7, 2, 2, 1, 9, 9, 7, 5, 7, 6, 0, 5, 3, 1, 7, 8, 8, 3, 4, 9, 1, 6, 6, 2, 6, 7, 9, 5, 8, 5, 9, 2, 6
Offset: 0

Views

Author

Amiram Eldar, Feb 05 2022

Keywords

Examples

			0.89086702197211826004885152924156802043051284415820...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[NSum[(-1)^n/Fibonacci[4*n + 2], {n, 0, Infinity}, WorkingPrecision -> 1200], 10, 100][[1]]
  • PARI
    sumpos(k=0, (-1)^k/fibonacci(4*k+2)) \\ Michel Marcus, Feb 05 2022

Formula

Equals sqrt(5) * Sum_{k>=0} 1/Lucas(4*k+2) (Carlitz, 1967).
Showing 1-6 of 6 results.