cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A056854 a(n) = Lucas(4*n).

Original entry on oeis.org

2, 7, 47, 322, 2207, 15127, 103682, 710647, 4870847, 33385282, 228826127, 1568397607, 10749957122, 73681302247, 505019158607, 3461452808002, 23725150497407, 162614600673847, 1114577054219522, 7639424778862807, 52361396397820127, 358890350005878082, 2459871053643326447
Offset: 0

Views

Author

Barry E. Williams, Aug 29 2000

Keywords

Comments

a(n) and b(n) := A004187(n) are the nonnegative proper and improper solutions of the Pell equation a(n)^2 - 5*(3*b(n))^2 = +4. See the cross-reference to A004187 below. - Wolfdieter Lang, Jun 26 2013
Lucas numbers of the form n^2-2. - Michel Lagneau, Aug 11 2014

Examples

			Pell equation: n = 0, 2^2 - 45*0^2 = +4 (improper);  n = 1, 7^2 - 5*(3*1)^2 = +4; n=2, 47^2 - 5*(3*7)^2 = +4. - _Wolfdieter Lang_, Jun 26 2013
		

References

  • R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.

Crossrefs

Cf. quadrisection of A000032: this sequence (first), A056914 (second), A246453 (third, without 11), A288913 (fourth).
Cf. Lucas(k*n): A000032 (k = 1), A005248 (k = 2), A014448 (k = 3), A001946 (k = 5), A087215 (k = 6), A087281 (k = 7), A087265 (k = 8), A087287 (k = 9), A065705 (k = 10), A089772 (k = 11), A089775 (k = 12).

Programs

  • Magma
    [Lucas(4*n): n in [0..100]]; // Vincenzo Librandi, Apr 14 2011
  • Mathematica
    a[0] = 2; a[1] = 7; a[n_] := 7a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 19}] (* Robert G. Wilson v, Jan 30 2004 *)
    LinearRecurrence[{7,-1},{2,7},25] (* or *) LucasL[4*Range[0,25]] (* Harvey P. Dale, Aug 08 2011 *)
  • PARI
    a(n)=if(n<0,0,polsym(1-7*x+x^2,n)[n+1])
    
  • PARI
    a(n)=if(n<0,0,2*subst(poltchebi(n),x,7/2))
    
  • Sage
    [lucas_number2(n,7,1) for n in range(27)] #Zerinvary Lajos, Jun 25 2008
    

Formula

a(n) = 7*a(n-1) - a(n-2) with a(0)=2, a(1)=7.
a(n) = A000032(4*n), where A000032 = Lucas numbers.
a(n) = 7*S(n-1, 7) - 2*S(n-2, 7) = S(n, 7) - S(n-2, 7) = 2*T(n, 7/2), with S(n, x) := U(n, x/2), S(-1, x) := 0, S(-2, x) := -1. U(n, x), resp. T(n, x), are Chebyshev's polynomials of the second, resp. first, kind. S(n-1, 7) = A004187(n), n>=0. See A049310 and A053120.
a(n) = ((7+sqrt(45))/2)^n + ((7-sqrt(45))/2)^n.
G.f.: (2-7x)/(1-7x+x^2).
a(n) = A005248(2*n); bisection of A005248.
a(n) = Fibonacci(8*n)/Fibonacci(4*n), n>0. - Gary Detlefs, Dec 26 2010
a(n) = 2 + 5*Fibonacci(2*n)^2 = 2 + 5*A049684(n), n >= 0. This is in Koshy's book (reference under A065563) 15. on p. 88. Compare with the above Chebyshev T formula. - Wolfdieter Lang, Aug 27 2012
From Peter Bala, Jan 06 2013: (Start)
Let F(x) = Product_{n = 0..inf} (1 + x^(4*n+1))/(1 + x^(4*n+3)). Let alpha = 1/2*(7 - 3*sqrt(5)). This sequence gives the simple continued fraction expansion of 1 + F(alpha) = 2.14242 42709 40138 85949 ... = 2 + 1/(7 + 1/(47 + 1/(322 + ...))).
Also F(-alpha) = 0.85670 72882 04563 14901 ... has the continued fraction representation 1 - 1/(7 - 1/(47 - 1/(322 - ...))) and the simple continued fraction expansion 1/(1 + 1/((7-2) + 1/(1 + 1/((47-2) + 1/(1 + 1/((322-2) + 1/(1 + ...))))))). Cf. A005248.
F(alpha)*F(-alpha) has the simple continued fraction expansion 1/(1 + 1/((7^2-4) + 1/(1 + 1/((47^2-4) + 1/(1 + 1/((322^2-4) + 1/(1 + ...))))))).
Added Oct 13 2019: 1/2 + (1/2)*F(alpha)/F(-alpha) = 1.16675297774947414828... has the simple continued fraction expansion 1 + 1/((7 - 2) + 1/(1 + 1/((322 - 2) + 1/(1 + 1/(15127 - 2) + 1/(1 + ...))))). (End)
a(n) = Fibonacci(4*n+2) - Fibonacci(4*n-2), where Fibonacci(-2) = -1. - Bruno Berselli, May 25 2015
a(n) = sqrt(45*(A004187(n))^2+4).
From Peter Bala, Oct 13 2019: (Start)
a(n) = F(4*n+4)/F(4) - F(4*n-4)/F(4) = A004187(n+1) - A004187(n-1).
a(n) = trace(M^n), where M is the 2 X 2 matrix [0, 1; 1, 1]^4 = [2, 3; 3, 5].
Consequently the Gauss congruences hold: a(n*p^k) = a(n*p^(k-1)) (mod p^k) for all prime p and positive integers n and k. See Zarelua and also Stanley (Ch. 5, Ex. 5.2(a) and its solution).
5*Sum_{n >= 1} 1/(a(n) - 9/a(n)) = 1: (9 = Lucas(4)+2 and 5 = Lucas(4)-2)
9*Sum_{n >= 1} (-1)^(n+1)/(a(n) + 5/a(n)) = 1.
Sum_{n >= 1} 1/a(n) = (1/4)*( theta_3((7-3*sqrt(5))/2)^2 - 1 ), where theta_3(q) = 1 + 2*Sum_{n >= 1} q^n^2. Cf. A153415.
Sum_{n >= 1} (-1)^(n+1)/a(n) = (1/4)*( 1 - theta_3((3*sqrt(5)-7)/2)^2 ).
x*exp(Sum_{n >= 1} a(n)*x^/n) = x + 7*x^2 + 48*x^3 + 329*x^4 + ... is the o.g.f. for A004187. (End)
E.g.f.: 2*exp(7*x/2)*cosh(3*sqrt(5)*x/2). - Stefano Spezia, Oct 18 2019
a(2k+1)/7 is the numerator of the continued fraction [3*sqrt(5), 3*sqrt(5), ..., 3*sqrt(5)] with 2k copies of 3*sqrt(5), for k>0. - Greg Dresden and Tracy Z. Wu, Sep 10 2020
a(n) = Sum_{k>=1} Lucas(2*n*k)/(Lucas(2*n)^k). - Diego Rattaggi, Jan 20 2025

Extensions

More terms from James Sellers, Aug 31 2000
Chebyshev comments from Wolfdieter Lang, Oct 31 2002

A056914 a(n) = Lucas(4*n+1).

Original entry on oeis.org

1, 11, 76, 521, 3571, 24476, 167761, 1149851, 7881196, 54018521, 370248451, 2537720636, 17393796001, 119218851371, 817138163596, 5600748293801, 38388099893011, 263115950957276, 1803423556807921, 12360848946698171
Offset: 0

Views

Author

Barry E. Williams, Jul 11 2000

Keywords

Comments

a(n) = (t(i+4n+1) - t(i))/(t(i+2n+1) - t(i+2n)), where (t) is any sequence of the form t(n+2) = 4t(n+1) - 4t(n) + t(n-1) or of the form t(n+1) = 3t(n) - t(n-1) without regard to initial values as long as t(i+2n+1) - t(i+2n) != 0. - Klaus Purath, Jun 24 2024

References

  • V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers, A Publication of the Fibonacci Association, Houghton Mifflin Co., 1969, pp. 27-29.

Crossrefs

Cf. (A056914) = sqrt{5*(A033889)^2 - 4}.
Cf. quadrisection of A000032: A056854 (first), this sequence (second), A246453 (third, without 11), A288913 (fourth).

Programs

  • GAP
    List([0..30], n-> Lucas(1,-1,4*n+1)[2] ); # G. C. Greubel, Jan 16 2020
  • Magma
    [Lucas(4*n+1): n in [0..30]]; // G. C. Greubel, Dec 24 2017
    
  • Maple
    with(combinat); seq(fibonacci(4*n+2)+fibonacci(4*n), n = 0..30); # G. C. Greubel, Jan 16 2020
  • Mathematica
    LucasL[4*Range[0,30]+1] (* or *) LinearRecurrence[{7,-1}, {1,11}, 30] (* G. C. Greubel, Dec 24 2017 *)
  • PARI
    my(x='x+O('x^30)); Vec((1+4*x)/(1-7*x+x^2)) \\ G. C. Greubel, Dec 24 2017
    
  • Sage
    [lucas_number2(4*n+1,1,-1) for n in (0..30)] # G. C. Greubel, Jan 16 2020
    

Formula

a(n) = 7*a(n-1) - a(n-2), with a(0)=1, a(1)=11.
a(n) = (11*(((7+3*sqrt(5))/2)^n - ((7-3*sqrt(5))/2)^n) - (((7+3*sqrt(5))/2)^(n-1) - ((7-3*sqrt(5))/2)^(n-1)))/3*sqrt(5).
G.f.: (1+4*x)/(1-7*x+x^2). - Philippe Deléham, Nov 02 2008

A246453 Lucas numbers (A000204) of the form n^2 + 2.

Original entry on oeis.org

3, 11, 18, 123, 843, 5778, 39603, 271443, 1860498, 12752043, 87403803, 599074578, 4106118243, 28143753123, 192900153618, 1322157322203, 9062201101803, 62113250390418, 425730551631123, 2918000611027443, 20000273725560978, 137083915467899403, 939587134549734843
Offset: 1

Views

Author

Michel Lagneau, Aug 26 2014

Keywords

Comments

a(n) = {11} union {A000204(2+4*n)} for n=0,1,...
Intersection of A000204 and A059100. - Michel Marcus, Aug 26 2014

Crossrefs

Cf. A000204 (Lucas), A059100 (n^2+2).
Cf. quadrisection of A000032: A056854 (first), A056914 (second), this sequence (third, without 11), A288913 (fourth).

Programs

  • Magma
    I:=[3,11,18,123]; [n le 4 select I[n] else 7*Self(n-1)-Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 21 2017
  • Maple
    with(combinat,fibonacci):lst:={}:lst1:={}:nn:=5000:
      for n from 1 to nn do:
        lst:=lst union {2*fibonacci(n-1)+fibonacci(n)}:
      od:
       for m from 1 to nn do:
        if {m^2+2} intersect lst = {m^2+2}
        then
        lst1:=lst1 union {m^2+2}:
        else
        fi:
       od:
       print(lst1):
  • Mathematica
    CoefficientList[Series[x*(3-10*x-56*x^2+8*x^3)/(1-7*x+x^2), {x,0,50}], x] (* or *) LinearRecurrence[{7,-1}, {3, 11, 18, 123}, 30] (* G. C. Greubel, Dec 21 2017 *)
    Select[LucasL[Range[100]],IntegerQ[Sqrt[#-2]]&] (* Harvey P. Dale, Dec 31 2018 *)
  • PARI
    lista(nn) = for (n=0, nn, luc = fibonacci(n+1) + fibonacci(n-1); if (issquare(luc-2), print1(luc, ", "))); \\ Michel Marcus, Mar 29 2016
    
  • PARI
    Vec(x*(3 - 10*x - 56*x^2 + 8*x^3) / (1 - 7*x + x^2) + O(x^30)) \\ Colin Barker, Jun 20 2017
    

Formula

From Colin Barker, Jun 20 2017: (Start)
G.f.: x*(3 - 10*x - 56*x^2 + 8*x^3) / (1 - 7*x + x^2).
a(n) = (2^(-n)*((7+3*sqrt(5))^n*(-20+9*sqrt(5)) + (7-3*sqrt(5))^n*(20+9*sqrt(5)))) / sqrt(5) for n>2.
a(n) = 7*a(n-1) - a(n-2) for n>4. (End)
E.g.f.: 2*exp(7*x/2)*(9*cosh(3*sqrt(5)*x/2) - 4*sqrt(5)*sinh(3*sqrt(5)*x/2)) + 4*x^2 - 18. - Stefano Spezia, Apr 14 2025

Extensions

Corrected by Michel Marcus, Mar 29 2016

A354337 a(n) is the integer w such that (L(2*n)^2, -L(2*n + 1)^2, w) is a primitive solution to the Diophantine equation 2*x^3 + 2*y^3 + z^3 = 125, where L(n) is the n-th Lucas number (A000032).

Original entry on oeis.org

19, 149, 1039, 7139, 48949, 335519, 2299699, 15762389, 108037039, 740496899, 5075441269, 34787591999, 238437702739, 1634276327189, 11201496587599, 76776199786019, 526231901914549, 3606847113615839, 24721697893396339, 169445038140158549, 1161393569087713519
Offset: 1

Views

Author

XU Pingya, Jun 20 2022

Keywords

Comments

Subsequence of A017377.

Examples

			2*(L(4)^2)^3 + 2*(-L(5)^2)^3 + (149)^3 = 2*(49)^3 + 2*(-121)^3 + (149)^3 = 125, a(2) = 149.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{7,-1},{19,149},21]-1 + LucasL[2*Range[21]-3]^2

Formula

a(n) = (125 - 2*A005248(n)^6 + 2*A002878(n)^6)^(1/3).
a(n) = Lucas(4*n+2) + Lucas(4n-1) - 3 = 2*A056914(n)-3 = 15*A092521(n) + A288913(n-1).
a(n) = 2*A081017(n) - 1.
a(n) = 10*A089508(n) + 9.
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
G.f.: x*(19 - 3*x - x^2)/((1 - x)*(1 - 7*x + x^2)). - Stefano Spezia, Jun 22 2022
Showing 1-4 of 4 results.