cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A103134 a(n) = Fibonacci(6n+4).

Original entry on oeis.org

3, 55, 987, 17711, 317811, 5702887, 102334155, 1836311903, 32951280099, 591286729879, 10610209857723, 190392490709135, 3416454622906707, 61305790721611591, 1100087778366101931, 19740274219868223167, 354224848179261915075, 6356306993006846248183
Offset: 0

Views

Author

Creighton Dement, Jan 24 2005

Keywords

Comments

Gives those numbers which are Fibonacci numbers in A103135.
Generally, for any sequence where a(0)= Fibonacci(p), a(1) = F(p+q) and Lucas(q)*a(1) +- a(0) = F(p+2q), then a(n) = L(q)*a(n-1) +- a(n-2) generates the following Fibonacci sequence: a(n) = F(q(n)+p). So for this sequence, a(n) = 18*a(n-1) - a(n-2) = F(6n+4): q=6, because 18 is the 6th Lucas number (L(0) = 2, L(1)=1); F(4)=3, F(10)=55 and F(16)=987 (F(0)=0 and F(1)=1). See Lucas sequence A000032. This is a special case where a(0) and a(1) are increasing Fibonacci numbers and Lucas(m)*a(1) +- a(0) is another Fibonacci. - Bob Selcoe, Jul 08 2013
a(n) = x + y where x and y are solutions to x^2 = 5*y^2 - 1. (See related sequences with formula below.) - Richard R. Forberg, Sep 05 2013

Crossrefs

Programs

Formula

G.f.: (x+3)/(x^2-18*x+1).
a(n) = 18*a(n-1) - a(n-2) for n>1; a(0)=3, a(1)=55. - Philippe Deléham, Nov 17 2008
a(n) = A007805(n) + A075796(n), as follows from comment above. - Richard R. Forberg, Sep 05 2013
a(n) = ((15-7*sqrt(5)+(9+4*sqrt(5))^(2*n)*(15+7*sqrt(5))))/(10*(9+4*sqrt(5))^n). - Colin Barker, Jan 24 2016
a(n) = S(3*n+1, 3) = 3*S(n,18) + S(n-1,18), with the Chebyshev S polynomials (A049310), S(-1, x) = 0, and S(n, 18) = A049660(n+1). - Wolfdieter Lang, May 08 2023

Extensions

Edited by N. J. A. Sloane, Aug 10 2010

A134498 a(n) = Fibonacci(7n).

Original entry on oeis.org

0, 13, 377, 10946, 317811, 9227465, 267914296, 7778742049, 225851433717, 6557470319842, 190392490709135, 5527939700884757, 160500643816367088, 4660046610375530309, 135301852344706746049, 3928413764606871165730
Offset: 0

Views

Author

Artur Jasinski, Oct 28 2007

Keywords

Crossrefs

Programs

  • Magma
    [Fibonacci(7*n): n in [0..100]]; // Vincenzo Librandi, Apr 17 2011
    
  • Mathematica
    Table[Fibonacci[7n], {n, 0, 30}]
    {a,b}={0,13};Do[Print[c={a,b}.{1,29}];a=b;b=c,{30}] (* Zak Seidov, Nov 02 2009 *)
  • MuPAD
    numlib::fibonacci(7*n) $ n = 0..25; // Zerinvary Lajos, May 09 2008
    
  • PARI
    a(n)=fibonacci(7*n) \\ Charles R Greathouse IV, Jun 11 2015
  • Sage
    [fibonacci(7*n) for n in range(0, 16)] # Zerinvary Lajos, May 15 2009
    

Formula

G.f.: -13*x / ( -1+29*x+x^2 ). a(n) = 13*A049667(n). - R. J. Mathar, Apr 17 2011
a(n) = A000045(A008589(n)). - Michel Marcus, Nov 08 2013

Extensions

Offset changed from 1 to 0 by Vincenzo Librandi, Apr 17 2011

A134494 a(n) = Fibonacci(6n+2).

Original entry on oeis.org

1, 21, 377, 6765, 121393, 2178309, 39088169, 701408733, 12586269025, 225851433717, 4052739537881, 72723460248141, 1304969544928657, 23416728348467685, 420196140727489673, 7540113804746346429, 135301852344706746049, 2427893228399975082453
Offset: 0

Views

Author

Artur Jasinski, Oct 28 2007

Keywords

Crossrefs

Programs

  • Magma
    [Fibonacci(6*n +2): n in [0..100]]; // Vincenzo Librandi, Apr 17 2011
    
  • Maple
    seq( combinat[fibonacci](6*n+2),n=0..10) ; # R. J. Mathar, Apr 17 2011
  • Mathematica
    Table[Fibonacci[6n+2], {n, 0, 30}]
    Table[ChebyshevU[3*n, 3/2], {n, 0, 20}] (* Vaclav Kotesovec, May 27 2023 *)
  • PARI
    a(n)=fibonacci(6*n+2) \\ Charles R Greathouse IV, Jun 11 2015
    
  • PARI
    Vec((1+3*x)/(1-18*x+x^2) + O(x^100)) \\ Altug Alkan, Jan 24 2016

Formula

From R. J. Mathar, Jul 04 2011: (Start)
G.f.: ( 1+3*x ) / ( 1-18*x+x^2 ).
a(n) = 3*A049660(n)+A049660(n+1). (End)
a(n) = A000045(A016933(n)). - Michel Marcus, Nov 07 2013
a(n) = ((5-3*sqrt(5)+(5+3*sqrt(5))*(9+4*sqrt(5))^(2*n)))/(10*(9+4*sqrt(5))^n). - Colin Barker, Jan 24 2016
a(n) = S(3*n, 3) = S(n,18) + 3*S(n-1,18), with the Chebyshev S polynomials (A049310), S(-1, x) = 0, and S(n, 18) = A049660(n+1). - Wolfdieter Lang, May 08 2023

Extensions

Index in definition corrected by T. D. Noe, Joerg Arndt, Apr 17 2011

A134500 a(n) = Fibonacci(7n + 2).

Original entry on oeis.org

1, 34, 987, 28657, 832040, 24157817, 701408733, 20365011074, 591286729879, 17167680177565, 498454011879264, 14472334024676221, 420196140727489673, 12200160415121876738, 354224848179261915075, 10284720757613717413913
Offset: 0

Views

Author

Artur Jasinski, Oct 28 2007

Keywords

Crossrefs

Programs

Formula

G.f.: (-1-5*x) / (-1 + 29*x + x^2). - R. J. Mathar, Apr 17 2011
a(n) = A000045(A017005(n)). - Michel Marcus, Nov 07 2013

Extensions

Offset changed from 1 to 0 by Vincenzo Librandi, Apr 17 2011

A134501 a(n) = Fibonacci(7n + 3).

Original entry on oeis.org

2, 55, 1597, 46368, 1346269, 39088169, 1134903170, 32951280099, 956722026041, 27777890035288, 806515533049393, 23416728348467685, 679891637638612258, 19740274219868223167, 573147844013817084101, 16641027750620563662096
Offset: 0

Views

Author

Artur Jasinski, Oct 28 2007

Keywords

Crossrefs

Programs

Formula

From R. J. Mathar, Jul 04 2011: (Start)
G.f.: (-2+3*x) / (-1 + 29*x + x^2).
a(n) = 2*A049667(n+1) - 3*A049667(n). (End)
a(n) = A000045(A017017(n)). - Michel Marcus, Nov 07 2013

Extensions

Offset changed to 0 by Vincenzo Librandi, Apr 16 2011

A134502 a(n) = Fibonacci(7n + 4).

Original entry on oeis.org

3, 89, 2584, 75025, 2178309, 63245986, 1836311903, 53316291173, 1548008755920, 44945570212853, 1304969544928657, 37889062373143906, 1100087778366101931, 31940434634990099905, 927372692193078999176, 26925748508234281076009
Offset: 0

Views

Author

Artur Jasinski, Oct 28 2007

Keywords

Crossrefs

Programs

Formula

From R. J. Mathar, Jul 04 2011: (Start)
G.f.: (-3-2*x) / (-1 + 29*x + x^2).
a(n) = 2*A049667(n) + 3*A049667(n+1). (End)
a(n) = A000045(A017029(n)). - Michel Marcus, Nov 07 2013

Extensions

Offset changed from 1 to 0 by Vincenzo Librandi, Apr 17 2011

A134499 a(n) = Fibonacci(7*n+1).

Original entry on oeis.org

1, 21, 610, 17711, 514229, 14930352, 433494437, 12586269025, 365435296162, 10610209857723, 308061521170129, 8944394323791464, 259695496911122585, 7540113804746346429, 218922995834555169026, 6356306993006846248183
Offset: 0

Views

Author

Artur Jasinski, Oct 28 2007

Keywords

Crossrefs

Programs

Formula

G.f.: ( -1+8*x ) / ( -1+29*x+x^2 ). - R. J. Mathar, Apr 17 2011
2*a(n) = Fibonacci(7*n) + Lucas(7*n). - Bruno Berselli, Oct 13 2017

Extensions

Offset corrected by Vincenzo Librandi, Apr 16 2011

A134503 a(n) = Fibonacci(7n + 5).

Original entry on oeis.org

5, 144, 4181, 121393, 3524578, 102334155, 2971215073, 86267571272, 2504730781961, 72723460248141, 2111485077978050, 61305790721611591, 1779979416004714189, 51680708854858323072, 1500520536206896083277
Offset: 0

Views

Author

Artur Jasinski, Oct 28 2007

Keywords

Crossrefs

Programs

Formula

From R. J. Mathar, Apr 17 2011: (Start)
G.f.: (-5+x) / (-1 + 29*x + x^2).
a(n) = 5*A049667(n+1) - A049667(n). (End)

Extensions

Offset changed from 1 to 0 by Vincenzo Librandi, Apr 17 2011

A134489 a(n) = Fibonacci(5*n + 2).

Original entry on oeis.org

1, 13, 144, 1597, 17711, 196418, 2178309, 24157817, 267914296, 2971215073, 32951280099, 365435296162, 4052739537881, 44945570212853, 498454011879264, 5527939700884757, 61305790721611591, 679891637638612258
Offset: 0

Views

Author

Artur Jasinski, Oct 28 2007

Keywords

Comments

The o.g.f. of {F(m*n + 2)}_{n>=0}, for m = 1, 2, ..., is
G(m,x) = (1 + F(m - 2)*x) / (1 - L(m)*x + (-1)^m*x^2), with F = A000045 and F(-1) = 1, and L = A000032. - Wolfdieter Lang, Feb 06 2023

Crossrefs

Programs

  • Magma
    [Fibonacci(5*n+2): n in [0..50]]; // Vincenzo Librandi, Apr 20 2011
  • Mathematica
    Table[Fibonacci[5n + 2], {n, 0, 30}]
    LinearRecurrence[{11,1},{1,13},20] (* Harvey P. Dale, May 05 2022 *)

Formula

From R. J. Mathar, Jul 04 2011: (Start)
G.f.: (-1-2*x) / (-1 + 11*x + x^2).
a(n) = 2*A049666(n) + A049666(n+1). (End)
a(n) = A000045(A016873(n)). - Michel Marcus, Nov 05 2013
Showing 1-9 of 9 results.