A134492
a(n) = Fibonacci(6*n).
Original entry on oeis.org
0, 8, 144, 2584, 46368, 832040, 14930352, 267914296, 4807526976, 86267571272, 1548008755920, 27777890035288, 498454011879264, 8944394323791464, 160500643816367088, 2880067194370816120, 51680708854858323072, 927372692193078999176, 16641027750620563662096
Offset: 0
Cf.
A000032,
A000045,
A008588,
A049660,
A079343,
A014445,
A014448,
A134493,
A134494,
A134495,
A103134,
A134497,
A134498.
-
[Fibonacci(6*n): n in [0..100]]; // Vincenzo Librandi, Apr 17 2011
-
Table[Fibonacci[6n], {n, 0, 30}]
LinearRecurrence[{18,-1},{0,8},30] (* Harvey P. Dale, Aug 15 2017 *)
-
numlib::fibonacci(6*n) $ n = 0..25; // Zerinvary Lajos, May 09 2008
-
a(n)=fibonacci(6*n) \\ Charles R Greathouse IV, Sep 16 2015
-
concat(0, Vec(8*x/(1-18*x+x^2) + O(x^20))) \\ Colin Barker, Jan 24 2016
-
[fibonacci(6*n) for n in range(0, 17)] # Zerinvary Lajos, May 15 2009
A103134
a(n) = Fibonacci(6n+4).
Original entry on oeis.org
3, 55, 987, 17711, 317811, 5702887, 102334155, 1836311903, 32951280099, 591286729879, 10610209857723, 190392490709135, 3416454622906707, 61305790721611591, 1100087778366101931, 19740274219868223167, 354224848179261915075, 6356306993006846248183
Offset: 0
Cf.
A000032,
A000045,
A001906,
A001519,
A015448,
A014445,
A033888,
A033889,
A033890,
A033891,
A049310,
A049660,
A102312,
A099100,
A134490,
A134491,
A134492,
A134493,
A134494,
A134495,
A103134,
A134497,
A134498,
A134499,
A134500,
A134501,
A134502,
A134503,
A134504.
-
[Fibonacci(6*n +4): n in [0..100]]; // Vincenzo Librandi, Apr 17 2011
-
Table[Fibonacci[6n+4], {n, 0, 30}]
LinearRecurrence[{18,-1},{3,55},20] (* Harvey P. Dale, Mar 29 2023 *)
Table[ChebyshevU[3*n+1, 3/2], {n, 0, 20}] (* Vaclav Kotesovec, May 27 2023 *)
-
a(n)=fibonacci(6*n+4) \\ Charles R Greathouse IV, Feb 05 2013
A049667
a(n) = Fibonacci(7*n)/13.
Original entry on oeis.org
0, 1, 29, 842, 24447, 709805, 20608792, 598364773, 17373187209, 504420793834, 14645576208395, 425226130837289, 12346203370489776, 358465123875040793, 10407834795746672773, 302185674200528551210, 8773792386611074657863
Offset: 0
-
[Fibonacci(7*n)/13: n in [0..30]]; // G. C. Greubel, Dec 02 2017
-
a:= n-> (<<0|1>, <1|29>>^n)[1, 2]:
seq(a(n), n=0..20); # Alois P. Heinz, Sep 20 2017
-
Fibonacci[(7*Range[0,20])]/13 (* or *) LinearRecurrence[{29,1},{0,1},20] (* Harvey P. Dale, Sep 17 2017 *)
-
numlib::fibonacci(7*n)/13 $ n = 0..25; // Zerinvary Lajos, May 09 2008
-
a(n)=fibonacci(7*n)/13 \\ Charles R Greathouse IV, Oct 07 2016
-
[fibonacci(7*n)/13 for n in range(0, 17)] # Zerinvary Lajos, May 15 2009
A134504
a(n) = Fibonacci(7n + 6).
Original entry on oeis.org
8, 233, 6765, 196418, 5702887, 165580141, 4807526976, 139583862445, 4052739537881, 117669030460994, 3416454622906707, 99194853094755497, 2880067194370816120, 83621143489848422977, 2427893228399975082453
Offset: 0
Cf.
A000045,
A001906,
A001519,
A033887,
A015448,
A014445,
A033888,
A033889,
A033890,
A033891,
A102312,
A099100,
A134490,
A134491,
A134492,
A134493,
A134494,
A134495,
A103134,
A134497,
A134498,
A134499,
A134500,
A134501,
A134502,
A134503,
A134504.
-
[Fibonacci(7*n +6): n in [0..100]]; // Vincenzo Librandi, Apr 17 2011
-
Table[Fibonacci[7n+6], {n, 0, 30}]
LinearRecurrence[{29,1},{8,233},20] (* Harvey P. Dale, Jul 21 2021 *)
-
a(n)=fibonacci(7*n+6) \\ Charles R Greathouse IV, Jun 11 2015
A134500
a(n) = Fibonacci(7n + 2).
Original entry on oeis.org
1, 34, 987, 28657, 832040, 24157817, 701408733, 20365011074, 591286729879, 17167680177565, 498454011879264, 14472334024676221, 420196140727489673, 12200160415121876738, 354224848179261915075, 10284720757613717413913
Offset: 0
A134499
a(n) = Fibonacci(7*n+1).
Original entry on oeis.org
1, 21, 610, 17711, 514229, 14930352, 433494437, 12586269025, 365435296162, 10610209857723, 308061521170129, 8944394323791464, 259695496911122585, 7540113804746346429, 218922995834555169026, 6356306993006846248183
Offset: 0
A134503
a(n) = Fibonacci(7n + 5).
Original entry on oeis.org
5, 144, 4181, 121393, 3524578, 102334155, 2971215073, 86267571272, 2504730781961, 72723460248141, 2111485077978050, 61305790721611591, 1779979416004714189, 51680708854858323072, 1500520536206896083277
Offset: 0
-
[Fibonacci(7*n+5): n in [0..100]]; // Vincenzo Librandi, Apr 17 2011
-
Table[Fibonacci[7n+5], {n, 0, 30}]
LinearRecurrence[{29,1},{5,144},20] (* Harvey P. Dale, Apr 24 2017 *)
-
a(n)=fibonacci(7*n+5) \\ Charles R Greathouse IV, Jun 11 2015
A138473
a(n) = Fibonacci(8*n).
Original entry on oeis.org
0, 21, 987, 46368, 2178309, 102334155, 4807526976, 225851433717, 10610209857723, 498454011879264, 23416728348467685, 1100087778366101931, 51680708854858323072, 2427893228399975082453, 114059301025943970552219, 5358359254990966640871840
Offset: 0
-
[Fibonacci(8*n): n in [0..100]]; // Vincenzo Librandi, Apr 17 2011
-
Fibonacci[8Range[0,20]] (* Harvey P. Dale, Jun 22 2013 *)
-
numlib::fibonacci(8*n) $ n = 0..25;
-
concat(0, Vec(21*x / (1 - 47*x + x^2) + O(x^30))) \\ Colin Barker, Apr 06 2017
-
[fibonacci(8*n) for n in range(0, 15)] # Zerinvary Lajos, May 15 2009
A167398
a(n) = Fibonacci(11*n).
Original entry on oeis.org
0, 89, 17711, 3524578, 701408733, 139583862445, 27777890035288, 5527939700884757, 1100087778366101931, 218922995834555169026, 43566776258854844738105, 8670007398507948658051921
Offset: 0
-
[Fibonacci(11*n): n in [0..100]]; // Vincenzo Librandi, Apr 17 2011
-
(*1*)Table[Fibonacci[11k],{k,0,20}]
(*2*){a,b}={0,89};Do[Print[c={a,b}.{1,199}];a=b;b=c,{20}]
A269500
a(n) = Fibonacci(10*n).
Original entry on oeis.org
0, 55, 6765, 832040, 102334155, 12586269025, 1548008755920, 190392490709135, 23416728348467685, 2880067194370816120, 354224848179261915075, 43566776258854844738105, 5358359254990966640871840, 659034621587630041982498215, 81055900096023504197206408605
Offset: 0
Cf. similar sequences of the form Fibonacci(k*n):
A000045 (k = 1),
A001906 (k = 2),
A014445 (k = 3),
A033888 (k = 4),
A102312 (k = 5),
A134492 (k = 6),
A134498 (k = 7),
A138473 (k = 8),
A138590 (k = 9), this sequence (k = 10),
A167398 (k = 11),
A214855 (k = 15).
-
Fibonacci[10Range[0, 14]]
FullSimplify[Table[(((1 + Sqrt[5])/2)^(10 n) - (2/(1 + Sqrt[5]))^(10 n))/Sqrt[5], {n, 0, 12}]]
LinearRecurrence[{123, -1}, {0, 55}, 15]
-
a(n) = fibonacci(10*n); \\ Michel Marcus, Mar 03 2016
-
concat(0, Vec(55*x/(1-123*x+x^2) + O(x^100))) \\ Altug Alkan, Mar 04 2016
Showing 1-10 of 10 results.
Comments