A269500 a(n) = Fibonacci(10*n).
0, 55, 6765, 832040, 102334155, 12586269025, 1548008755920, 190392490709135, 23416728348467685, 2880067194370816120, 354224848179261915075, 43566776258854844738105, 5358359254990966640871840, 659034621587630041982498215, 81055900096023504197206408605
Offset: 0
Links
- Eric Weisstein's World of Mathematics, Fibonacci Number
- Index entries for linear recurrences with constant coefficients, signature (123,-1)
Crossrefs
Programs
-
Mathematica
Fibonacci[10Range[0, 14]] FullSimplify[Table[(((1 + Sqrt[5])/2)^(10 n) - (2/(1 + Sqrt[5]))^(10 n))/Sqrt[5], {n, 0, 12}]] LinearRecurrence[{123, -1}, {0, 55}, 15]
-
PARI
a(n) = fibonacci(10*n); \\ Michel Marcus, Mar 03 2016
-
PARI
concat(0, Vec(55*x/(1-123*x+x^2) + O(x^100))) \\ Altug Alkan, Mar 04 2016
Formula
G.f.: 55*x/(1 - 123*x + x^2).
a(n) = 123*a(n-1) - a(n-2).
a(n) = A000045(10*n).
Lim_{n -> infinity} a(n + 1)/a(n) = phi^10 = 122.9918693812442…
Comments