cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A269500 a(n) = Fibonacci(10*n).

Original entry on oeis.org

0, 55, 6765, 832040, 102334155, 12586269025, 1548008755920, 190392490709135, 23416728348467685, 2880067194370816120, 354224848179261915075, 43566776258854844738105, 5358359254990966640871840, 659034621587630041982498215, 81055900096023504197206408605
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 03 2016

Keywords

Comments

More generally, the ordinary generating function for the Fibonacci(k*n) is F(k)*x/(1 - L(k)*x + (-1)^k*x^2), where F(k) is the k-th Fibonacci number (A000045), L(k) is the k-th Lucas number (A000032), or (phi^k - (-1/phi)^k)*x/(sqrt(5)*(1 - (phi^k + (-1/phi)^k)*x + (-1)^k*x^2)), where phi is the golden ratio (A001622).

Crossrefs

Cf. similar sequences of the form Fibonacci(k*n): A000045 (k = 1), A001906 (k = 2), A014445 (k = 3), A033888 (k = 4), A102312 (k = 5), A134492 (k = 6), A134498 (k = 7), A138473 (k = 8), A138590 (k = 9), this sequence (k = 10), A167398 (k = 11), A214855 (k = 15).
Cf. A000032 (Lucas numbers), A001622 (golden ratio).

Programs

  • Mathematica
    Fibonacci[10Range[0, 14]]
    FullSimplify[Table[(((1 + Sqrt[5])/2)^(10 n) - (2/(1 + Sqrt[5]))^(10 n))/Sqrt[5], {n, 0, 12}]]
    LinearRecurrence[{123, -1}, {0, 55}, 15]
  • PARI
    a(n) = fibonacci(10*n); \\ Michel Marcus, Mar 03 2016
    
  • PARI
    concat(0, Vec(55*x/(1-123*x+x^2) + O(x^100))) \\ Altug Alkan, Mar 04 2016

Formula

G.f.: 55*x/(1 - 123*x + x^2).
a(n) = 123*a(n-1) - a(n-2).
a(n) = A000045(10*n).
Lim_{n -> infinity} a(n + 1)/a(n) = phi^10 = 122.9918693812442…

A305413 a(n) = Fibonacci(11*n)/89.

Original entry on oeis.org

0, 1, 199, 39602, 7880997, 1568358005, 312111123992, 62111682032413, 12360536835574179, 2459808941961294034, 489514339987133086945, 97415813466381445596089, 19386236394149894806708656, 3857958458249295447980618633, 767753119428003944042949816623
Offset: 0

Views

Author

Vincenzo Librandi, Jun 05 2018

Keywords

Crossrefs

Cf. similar sequences: F(3*n)/2 (A001076), F(4*n)/3 (A004187), F(5*n)/5 (A049666), F(6*n)/8 (A049660), F(7*n)/13 (A049667), F(8*n)/21 (A049668), F(9*n)/34 (A049669), F(10*n)/55 (A049670), F(11*n)/89 (this sequence), F(12*n)/144 (A253368).

Programs

  • Magma
    [Fibonacci(11*n)/89: n in [0..30]];
    
  • Mathematica
    Fibonacci[11 Range[0, 20]]/89
    LinearRecurrence[{199,1},{0,1},20] (* Harvey P. Dale, Aug 03 2024 *)
  • PARI
    a(n) = fibonacci(11*n)/89 \\ Felix Fröhlich, Jul 30 2019

Formula

G.f.: x/(1 - 199*x - x^2).
a(n) = 199*a(n-1) + a(n-2) for n>1, a(0)=0, a(1)=1.
a(n) = A167398(n)/89.
For n >= 1, a(n) equals the denominator of the continued fraction [199, 199, ..., 199] (with n copies of 199). The numerator of that continued fraction is a(n+1). - Greg Dresden and Shaoxiong Yuan, Jul 29 2019
Showing 1-2 of 2 results.