cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A134492 a(n) = Fibonacci(6*n).

Original entry on oeis.org

0, 8, 144, 2584, 46368, 832040, 14930352, 267914296, 4807526976, 86267571272, 1548008755920, 27777890035288, 498454011879264, 8944394323791464, 160500643816367088, 2880067194370816120, 51680708854858323072, 927372692193078999176, 16641027750620563662096
Offset: 0

Views

Author

Artur Jasinski, Oct 28 2007

Keywords

Comments

All terms are divisible by 8. - Alonso del Arte, Jul 27 2013
Conjecture: For n >= 2, the terms of this sequence are exactly those Fibonacci numbers which are the sum of the three numbers of a Pythagorean triple (checked up to F(80)). - Felix Huber, Nov 03 2023

Crossrefs

Programs

Formula

a(n) = 18*a(n-1) - a(n-2) = 8*A049660(n). G.f.: 8*x/(1-18*x+x^2). - R. J. Mathar, Feb 16 2010
a(n) = A000045(A008588(n)). - Michel Marcus, Nov 08 2013
a(n) = ((-1+(9+4*sqrt(5))^(2*n)))/(sqrt(5)*(9+4*sqrt(5))^n). - Colin Barker, Jan 24 2016
a(n) = L(2n-1) * F(2n+1)^2 + L(2n+1) * F(2n-1)^2, where F(n) = A000045(n) and L(n) = A000032(n). - Diego Rattaggi, Nov 12 2020
a(n) = Fibonacci(3*n) * Lucas(3*n) = A000045(3*n) * A000032(3*n) = A014445(n) * A014448(n). - Amiram Eldar, Jan 11 2022

Extensions

Offset corrected by R. J. Mathar, Feb 16 2010

A103134 a(n) = Fibonacci(6n+4).

Original entry on oeis.org

3, 55, 987, 17711, 317811, 5702887, 102334155, 1836311903, 32951280099, 591286729879, 10610209857723, 190392490709135, 3416454622906707, 61305790721611591, 1100087778366101931, 19740274219868223167, 354224848179261915075, 6356306993006846248183
Offset: 0

Views

Author

Creighton Dement, Jan 24 2005

Keywords

Comments

Gives those numbers which are Fibonacci numbers in A103135.
Generally, for any sequence where a(0)= Fibonacci(p), a(1) = F(p+q) and Lucas(q)*a(1) +- a(0) = F(p+2q), then a(n) = L(q)*a(n-1) +- a(n-2) generates the following Fibonacci sequence: a(n) = F(q(n)+p). So for this sequence, a(n) = 18*a(n-1) - a(n-2) = F(6n+4): q=6, because 18 is the 6th Lucas number (L(0) = 2, L(1)=1); F(4)=3, F(10)=55 and F(16)=987 (F(0)=0 and F(1)=1). See Lucas sequence A000032. This is a special case where a(0) and a(1) are increasing Fibonacci numbers and Lucas(m)*a(1) +- a(0) is another Fibonacci. - Bob Selcoe, Jul 08 2013
a(n) = x + y where x and y are solutions to x^2 = 5*y^2 - 1. (See related sequences with formula below.) - Richard R. Forberg, Sep 05 2013

Crossrefs

Programs

Formula

G.f.: (x+3)/(x^2-18*x+1).
a(n) = 18*a(n-1) - a(n-2) for n>1; a(0)=3, a(1)=55. - Philippe Deléham, Nov 17 2008
a(n) = A007805(n) + A075796(n), as follows from comment above. - Richard R. Forberg, Sep 05 2013
a(n) = ((15-7*sqrt(5)+(9+4*sqrt(5))^(2*n)*(15+7*sqrt(5))))/(10*(9+4*sqrt(5))^n). - Colin Barker, Jan 24 2016
a(n) = S(3*n+1, 3) = 3*S(n,18) + S(n-1,18), with the Chebyshev S polynomials (A049310), S(-1, x) = 0, and S(n, 18) = A049660(n+1). - Wolfdieter Lang, May 08 2023

Extensions

Edited by N. J. A. Sloane, Aug 10 2010

A134497 a(n) = Fibonacci(6n+5).

Original entry on oeis.org

5, 89, 1597, 28657, 514229, 9227465, 165580141, 2971215073, 53316291173, 956722026041, 17167680177565, 308061521170129, 5527939700884757, 99194853094755497, 1779979416004714189, 31940434634990099905, 573147844013817084101, 10284720757613717413913
Offset: 0

Views

Author

Artur Jasinski, Oct 28 2007

Keywords

Crossrefs

Programs

  • Magma
    [Fibonacci(6*n +5): n in [0..100]]; // Vincenzo Librandi, Apr 17 2011
    
  • Mathematica
    Table[Fibonacci[6n+5], {n, 0, 30}]
    Take[Fibonacci[Range[100]],{5,-1,6}] (* Harvey P. Dale, Jun 18 2013 *)
  • PARI
    a(n)=fibonacci(6*n+5) \\ Charles R Greathouse IV, Jun 11 2015
    
  • PARI
    Vec((5-x)/(1-18*x+x^2) + O(x^100)) \\ Altug Alkan, Jan 24 2016

Formula

G.f.: ( 5-x ) / ( 1-18*x+x^2 ). a(n) = 5*A049660(n+1)-A049660(n). - R. J. Mathar, Apr 17 2011
a(n) = A000045(A016969(n)). - Michel Marcus, Nov 08 2013
a(n) = ((25-11*sqrt(5)+(9+4*sqrt(5))^(2*n)*(25+11*sqrt(5))))/(10*(9+4*sqrt(5))^n). - Colin Barker, Jan 24 2016
a(n) = 5*S(n, 18) - S(n-1, 18), n >= 0, with the Chebyshev S-polynomials S(n-1, 18) = A049660(n). (See the g.f.) - Wolfdieter Lang, Jul 10 2018
From Peter Bala, Aug 11 2022: (Start)
Let n ** m = n*m + floor(phi*n)*floor(phi*m), where phi = (1 + sqrt(5))/2, denote the Porta-Stolarsky star product of the integers n and m (see A101858). Then a(n) = 5 ** 5 ** ... ** 5 (n+1 factors).
a(2*n+1) = a(n) ** a(n) = Fibonacci(12*n+11); a(3*n+2) = a(n) ** a(n) ** a(n) = Fibonacci(18*n+17) and so on. (End)

Extensions

Offset changed from 1 to 0 by Vincenzo Librandi, Apr 17 2011

A134493 a(n) = Fibonacci(6*n+1).

Original entry on oeis.org

1, 13, 233, 4181, 75025, 1346269, 24157817, 433494437, 7778742049, 139583862445, 2504730781961, 44945570212853, 806515533049393, 14472334024676221, 259695496911122585, 4660046610375530309, 83621143489848422977, 1500520536206896083277, 26925748508234281076009
Offset: 0

Views

Author

Artur Jasinski, Oct 28 2007

Keywords

Comments

For positive n, a(n) equals (-1)^n times the permanent of the (6n)X(6n) tridiagonal matrix with ((-1)^(1/6))'s along the three central diagonals. - John M. Campbell, Jul 12 2011
a(n) = x + y where those two values are solutions to: x^2 = 5*y^2 + 1. (See related sequences with formula below). - Richard R. Forberg, Sep 05 2013

Crossrefs

Programs

  • Magma
    [Fibonacci(6*n+1): n in [0..100]]; // Vincenzo Librandi, Apr 16 2011
    
  • Mathematica
    Table[Fibonacci[6n+1], {n, 0, 30}]
  • PARI
    a(n)=fibonacci(6*n+1) \\ Charles R Greathouse IV, Jul 15 2011
    
  • PARI
    Vec((1-5*x)/(1-18*x+x^2) + O(x^100)) \\ Altug Alkan, Jan 24 2016

Formula

From R. J. Mathar, Apr 17 2011: (Start)
G.f.: ( 1-5*x ) / ( 1-18*x+x^2 ).
a(n) = A049660(n+1) - 5*A049660(n). (End)
a(n) = Fibonacci(3*n+1)^2 + Fibonacci(3*n)^2. - Gary Detlefs, Oct 12 2011
a(n) = 18*a(n-1) - a(n-2). - Richard R. Forberg, Sep 05 2013
a(n) = A060645(n) + A023039(n), as derives from comment above. - Richard R. Forberg, Sep 05 2013
a(n) = ((5-sqrt(5)+(5+sqrt(5))*(9+4*sqrt(5))^(2*n)))/(10*(9+4*sqrt(5))^n). - Colin Barker, Jan 24 2016
2*a(n) = Fibonacci(6*n) + Lucas(6*n). - Bruno Berselli, Oct 13 2017
a(n) = S(n, 18) - 5*S(n-1, 18), n >= 0, with the Chebyshev S-polynomials S(n-1, 18) = A049660(n). (See the g.f.) - Wolfdieter Lang, Jul 10 2018

Extensions

Offset changed to 0 by Vincenzo Librandi, Apr 16 2011

A134495 a(n) = Fibonacci(6n + 3).

Original entry on oeis.org

2, 34, 610, 10946, 196418, 3524578, 63245986, 1134903170, 20365011074, 365435296162, 6557470319842, 117669030460994, 2111485077978050, 37889062373143906, 679891637638612258, 12200160415121876738
Offset: 0

Views

Author

Artur Jasinski, Oct 28 2007

Keywords

Comments

From Tanya Khovanova, Jan 06 2023: (Start)
Fibonacci(6n+3) are divisible by 2 but not by 4.
These numbers are not divisible by 3. (End)

Crossrefs

Programs

Formula

From R. J. Mathar, Apr 17 2011: (Start)
G.f.: (2-2*x) / (1 - 18*x + x^2).
a(n) = 2*A007805(n). (End)
a(n) = A000045(A016945(n)). - Michel Marcus, Nov 08 2013
a(n) = 2*(S(n, 18) - S(n-1, 18)), n >= 0, with the Chebyshev S-polynomials S(n-1, 18) = A049660(n). (See the g.f.) - Wolfdieter Lang, Jul 10 2018

Extensions

Index in definition and offset corrected by R. J. Mathar, Apr 17 2011

A134504 a(n) = Fibonacci(7n + 6).

Original entry on oeis.org

8, 233, 6765, 196418, 5702887, 165580141, 4807526976, 139583862445, 4052739537881, 117669030460994, 3416454622906707, 99194853094755497, 2880067194370816120, 83621143489848422977, 2427893228399975082453
Offset: 0

Views

Author

Artur Jasinski, Oct 28 2007

Keywords

Crossrefs

Programs

Formula

G.f.: (-8-x) / (-1 + 29*x + x^2). - R. J. Mathar, Jul 04 2011
a(n) = A000045(A017053(n)). - Michel Marcus, Nov 08 2013
a(n) = 29*a(n-1) + a(n-2). - Wesley Ivan Hurt, Mar 15 2023

Extensions

Offset changed from 1 to 0 by Vincenzo Librandi, Apr 17 2011
Showing 1-6 of 6 results.