cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A305316 a(n) = sqrt(5*b(n)^2 - 4) with b(n) = Fibonacci(6*n+5) = A134497(n).

Original entry on oeis.org

11, 199, 3571, 64079, 1149851, 20633239, 370248451, 6643838879, 119218851371, 2139295485799, 38388099893011, 688846502588399, 12360848946698171, 221806434537978679, 3980154972736918051, 71420983074726546239, 1281597540372340914251, 22997334743627409910279, 412670427844921037470771, 7405070366464951264563599, 132878596168524201724674011
Offset: 0

Views

Author

Wolfdieter Lang, Jul 10 2018

Keywords

Comments

This sequence gives all solutions of one of two classes of positive proper solutions a(n) = a5(n) of the Pell equation a(n)^2 - 5*b(n) = -4 with b(n) = b5(n) = F(6*n+5) = A134497(n), with the Fibonacci numbers F = A000045. These solutions are obtained from the fundamental positive solution [11, 5] (to be read as a column vector) by application of positive powers of the automorphic matrix A = matrix([9, 20], [4, 9]) of determinant +1.
The other class of positive proper solutions is obtained similarly from the fundamental solution [1,1] and is given by [a1(n), b1(n)], with a1(n) = A305315(n) and b1(n) = A134493(n) = F(6*n+1).
The remaining positive solutions are improper and are obtained by application of positive powers of the same matrix A on the fundamental improper solution [4, 2]. They are given by [a3(n), b3(n)], with a3(n) = F(6*n+3) = 4* A049629(n) and b3(n) = A134495(n) = 2*A007805(n).
For the explicit form of powers of the automorphic matrix A in terms of Chebyshev polynomials S(n, 18) see a comment in A305315.
The relation to a proof using this Pell equation of the well known fact that each odd-indexed Fibonacci number appears as largest member in Markoff (Markov) triples with smallest member 1 see also A305315.

Examples

			See A305315 for the three classes of solutions of this Pell equation
		

Crossrefs

Programs

  • Magma
    I:=[11, 199]; [n le 2 select I[n] else 18*Self(n-1)-Self(n-2): n in [1..25]]; // Vincenzo Librandi, Jul 22 2018
  • Mathematica
    f[n_] := Sqrt[5 Fibonacci[6 n + 5]^2 - 4]; Array[f, 17, 0] (* or *)
    CoefficientList[ Series[(x + 11)/(x^2 - 18x + 1), {x, 0, 18}], x] (* or *)
    LinearRecurrence[{18, -1}, {11, 199}, 18] (* Robert G. Wilson v, Jul 21 2018 *)
  • PARI
    x='x+O('x^99); Vec((11+x)/(1-18*x+x^2)) \\ Altug Alkan, Jul 11 2018
    

Formula

a(n) = sqrt(5*(F(6*n+5))^2 - 4), with F(6*n+5) = A134497(n), n >= 0.
a(n) = 11*S(n, 18) + S(n-1, 18), n >= 0, with the Chebyshev polynomials S(n, 18) = A049660(n+1) and S(-1, 18) = 0.
a(n) = 18*a(n-1) - a(n-2), n >= 1, with a(-1) = -1 and a(0) = 11.
G.f.: (11 + x)/(1 - 18*x + x^2).

A134492 a(n) = Fibonacci(6*n).

Original entry on oeis.org

0, 8, 144, 2584, 46368, 832040, 14930352, 267914296, 4807526976, 86267571272, 1548008755920, 27777890035288, 498454011879264, 8944394323791464, 160500643816367088, 2880067194370816120, 51680708854858323072, 927372692193078999176, 16641027750620563662096
Offset: 0

Views

Author

Artur Jasinski, Oct 28 2007

Keywords

Comments

All terms are divisible by 8. - Alonso del Arte, Jul 27 2013
Conjecture: For n >= 2, the terms of this sequence are exactly those Fibonacci numbers which are the sum of the three numbers of a Pythagorean triple (checked up to F(80)). - Felix Huber, Nov 03 2023

Crossrefs

Programs

Formula

a(n) = 18*a(n-1) - a(n-2) = 8*A049660(n). G.f.: 8*x/(1-18*x+x^2). - R. J. Mathar, Feb 16 2010
a(n) = A000045(A008588(n)). - Michel Marcus, Nov 08 2013
a(n) = ((-1+(9+4*sqrt(5))^(2*n)))/(sqrt(5)*(9+4*sqrt(5))^n). - Colin Barker, Jan 24 2016
a(n) = L(2n-1) * F(2n+1)^2 + L(2n+1) * F(2n-1)^2, where F(n) = A000045(n) and L(n) = A000032(n). - Diego Rattaggi, Nov 12 2020
a(n) = Fibonacci(3*n) * Lucas(3*n) = A000045(3*n) * A000032(3*n) = A014445(n) * A014448(n). - Amiram Eldar, Jan 11 2022

Extensions

Offset corrected by R. J. Mathar, Feb 16 2010

A103134 a(n) = Fibonacci(6n+4).

Original entry on oeis.org

3, 55, 987, 17711, 317811, 5702887, 102334155, 1836311903, 32951280099, 591286729879, 10610209857723, 190392490709135, 3416454622906707, 61305790721611591, 1100087778366101931, 19740274219868223167, 354224848179261915075, 6356306993006846248183
Offset: 0

Views

Author

Creighton Dement, Jan 24 2005

Keywords

Comments

Gives those numbers which are Fibonacci numbers in A103135.
Generally, for any sequence where a(0)= Fibonacci(p), a(1) = F(p+q) and Lucas(q)*a(1) +- a(0) = F(p+2q), then a(n) = L(q)*a(n-1) +- a(n-2) generates the following Fibonacci sequence: a(n) = F(q(n)+p). So for this sequence, a(n) = 18*a(n-1) - a(n-2) = F(6n+4): q=6, because 18 is the 6th Lucas number (L(0) = 2, L(1)=1); F(4)=3, F(10)=55 and F(16)=987 (F(0)=0 and F(1)=1). See Lucas sequence A000032. This is a special case where a(0) and a(1) are increasing Fibonacci numbers and Lucas(m)*a(1) +- a(0) is another Fibonacci. - Bob Selcoe, Jul 08 2013
a(n) = x + y where x and y are solutions to x^2 = 5*y^2 - 1. (See related sequences with formula below.) - Richard R. Forberg, Sep 05 2013

Crossrefs

Programs

Formula

G.f.: (x+3)/(x^2-18*x+1).
a(n) = 18*a(n-1) - a(n-2) for n>1; a(0)=3, a(1)=55. - Philippe Deléham, Nov 17 2008
a(n) = A007805(n) + A075796(n), as follows from comment above. - Richard R. Forberg, Sep 05 2013
a(n) = ((15-7*sqrt(5)+(9+4*sqrt(5))^(2*n)*(15+7*sqrt(5))))/(10*(9+4*sqrt(5))^n). - Colin Barker, Jan 24 2016
a(n) = S(3*n+1, 3) = 3*S(n,18) + S(n-1,18), with the Chebyshev S polynomials (A049310), S(-1, x) = 0, and S(n, 18) = A049660(n+1). - Wolfdieter Lang, May 08 2023

Extensions

Edited by N. J. A. Sloane, Aug 10 2010

A134493 a(n) = Fibonacci(6*n+1).

Original entry on oeis.org

1, 13, 233, 4181, 75025, 1346269, 24157817, 433494437, 7778742049, 139583862445, 2504730781961, 44945570212853, 806515533049393, 14472334024676221, 259695496911122585, 4660046610375530309, 83621143489848422977, 1500520536206896083277, 26925748508234281076009
Offset: 0

Views

Author

Artur Jasinski, Oct 28 2007

Keywords

Comments

For positive n, a(n) equals (-1)^n times the permanent of the (6n)X(6n) tridiagonal matrix with ((-1)^(1/6))'s along the three central diagonals. - John M. Campbell, Jul 12 2011
a(n) = x + y where those two values are solutions to: x^2 = 5*y^2 + 1. (See related sequences with formula below). - Richard R. Forberg, Sep 05 2013

Crossrefs

Programs

  • Magma
    [Fibonacci(6*n+1): n in [0..100]]; // Vincenzo Librandi, Apr 16 2011
    
  • Mathematica
    Table[Fibonacci[6n+1], {n, 0, 30}]
  • PARI
    a(n)=fibonacci(6*n+1) \\ Charles R Greathouse IV, Jul 15 2011
    
  • PARI
    Vec((1-5*x)/(1-18*x+x^2) + O(x^100)) \\ Altug Alkan, Jan 24 2016

Formula

From R. J. Mathar, Apr 17 2011: (Start)
G.f.: ( 1-5*x ) / ( 1-18*x+x^2 ).
a(n) = A049660(n+1) - 5*A049660(n). (End)
a(n) = Fibonacci(3*n+1)^2 + Fibonacci(3*n)^2. - Gary Detlefs, Oct 12 2011
a(n) = 18*a(n-1) - a(n-2). - Richard R. Forberg, Sep 05 2013
a(n) = A060645(n) + A023039(n), as derives from comment above. - Richard R. Forberg, Sep 05 2013
a(n) = ((5-sqrt(5)+(5+sqrt(5))*(9+4*sqrt(5))^(2*n)))/(10*(9+4*sqrt(5))^n). - Colin Barker, Jan 24 2016
2*a(n) = Fibonacci(6*n) + Lucas(6*n). - Bruno Berselli, Oct 13 2017
a(n) = S(n, 18) - 5*S(n-1, 18), n >= 0, with the Chebyshev S-polynomials S(n-1, 18) = A049660(n). (See the g.f.) - Wolfdieter Lang, Jul 10 2018

Extensions

Offset changed to 0 by Vincenzo Librandi, Apr 16 2011

A167808 Numerator of x(n), where x(n) = x(n-1) + x(n-2) with x(0)=0, x(1)=1/2.

Original entry on oeis.org

0, 1, 1, 1, 3, 5, 4, 13, 21, 17, 55, 89, 72, 233, 377, 305, 987, 1597, 1292, 4181, 6765, 5473, 17711, 28657, 23184, 75025, 121393, 98209, 317811, 514229, 416020, 1346269, 2178309, 1762289, 5702887, 9227465, 7465176, 24157817, 39088169, 31622993
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 12 2009

Keywords

Comments

Define a sequence c(n) by c(0)=0, c(1)=1; thereafter c(n) = (c(n-2)*c(n-1)-1)/(c(n-2)+c(n-1)+2). Then it appears that (apart from signs), a(n) is the denominator of c(n). - Jonas Holmvall, Jun 21 2023

Crossrefs

Cf. A000045, A130196 (denominator).
The a(2*n) appear in A179135. - Johannes W. Meijer, Jul 01 2010

Programs

  • GAP
    a:=[0,1,1,1,3,5];; for n in [7..40] do a[n]:=4*a[n-3]+a[n-6]; od; a; # Muniru A Asiru, Oct 16 2018
  • Maple
    nmax:=39; x(0):=0: x(1):=1/2:for n from 2 to nmax do x(n):=x(n-1)+x(n-2) od: for n from 0 to nmax do a(n):= numer(x(n)) od: seq(a(n),n=0..nmax); # Johannes W. Meijer, Jul 01 2010
    with(combinat):f:=n->fibonacci(n):L:=n->f(n)+2*f(n-1):seq(numer(f(n)/L(n)), n=0..39); # Gary Detlefs, Dec 11 2010
  • Mathematica
    f[n_]:=Numerator[Fibonacci[n]/Fibonacci[n+3]];Array[f,100,0] (* Vladimir Joseph Stephan Orlovsky, Feb 17 2011*)
    Numerator[LinearRecurrence[{1,1},{0,1/2},40]] (* Harvey P. Dale, Aug 08 2014 *)
    CoefficientList[Series[-x (1 + x + x^2 - x^3 + x^4)/((x^2 + x - 1) (x^4 - x^3 + 2 x^2 + x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 08 2014 *)
    LinearRecurrence[{0, 0, 4, 0, 0, 1},{0, 1, 1, 1, 3, 5},40] (* Ray Chandler, Aug 03 2015 *)
    a[n_]:=If[Mod[n,3]==0, Fibonacci[n]/2, Fibonacci[n]]; Array[a, 40, 0] (* Stefano Spezia, Oct 16 2018 *)

Formula

a(n) = (a(n-1)*A131534(n) + a(n-2)*A131534(n+2))/A131534(n+1) for n > 1.
a(3*n) = A001076(n) = (a(3*n-1) + a(3*n-2))/2;
a(3*n+1) = A033887(n) = 2*a(3*n-1) + a(3*n-2);
a(3*n+2) = A015448(n+1) = a(3*n-1) + 2*a(3*n-2).
From Johannes W. Meijer, Jul 01 2010: (Start)
a(2*n) = A001906(n)/A131534(n+1) for n >= 0 and a(2*n+1) = A179131(n)/5 for n >= 1.
a(6*n+2) - 2*a(6*n) = A134493(n);
2*a(6*n+1) - a(6*n+3) = A023039(n);
2*a(6*n+4) - a(6*n+2) = A134497(n);
a(6*n+5) - 2*a(6*n+3) = A103134(n);
2*a(6*n+4) - a(6*n+6) = A075796(n).
(End)
From Gary Detlefs, Dec 11 2010: (Start)
a(n) = numerator(A000045(n)/A000032(n)).
If n mod 3 = 0 then a(n) = Fibonacci(n)/2, else a(n)= Fibonacci(n). (End)
G.f.: -x*(1 + x + x^2 - x^3 + x^4) / ( (x^2 + x - 1)*(x^4 - x^3 + 2*x^2 + x + 1) ). - R. J. Mathar, Mar 08 2011
a(n) = 4*a(n-3) + a(n-6). - Muniru A Asiru, Oct 16 2018

Extensions

Typo in title corrected by Johannes W. Meijer, Jun 26 2010

A134504 a(n) = Fibonacci(7n + 6).

Original entry on oeis.org

8, 233, 6765, 196418, 5702887, 165580141, 4807526976, 139583862445, 4052739537881, 117669030460994, 3416454622906707, 99194853094755497, 2880067194370816120, 83621143489848422977, 2427893228399975082453
Offset: 0

Views

Author

Artur Jasinski, Oct 28 2007

Keywords

Crossrefs

Programs

Formula

G.f.: (-8-x) / (-1 + 29*x + x^2). - R. J. Mathar, Jul 04 2011
a(n) = A000045(A017053(n)). - Michel Marcus, Nov 08 2013
a(n) = 29*a(n-1) + a(n-2). - Wesley Ivan Hurt, Mar 15 2023

Extensions

Offset changed from 1 to 0 by Vincenzo Librandi, Apr 17 2011

A134501 a(n) = Fibonacci(7n + 3).

Original entry on oeis.org

2, 55, 1597, 46368, 1346269, 39088169, 1134903170, 32951280099, 956722026041, 27777890035288, 806515533049393, 23416728348467685, 679891637638612258, 19740274219868223167, 573147844013817084101, 16641027750620563662096
Offset: 0

Views

Author

Artur Jasinski, Oct 28 2007

Keywords

Crossrefs

Programs

Formula

From R. J. Mathar, Jul 04 2011: (Start)
G.f.: (-2+3*x) / (-1 + 29*x + x^2).
a(n) = 2*A049667(n+1) - 3*A049667(n). (End)
a(n) = A000045(A017017(n)). - Michel Marcus, Nov 07 2013

Extensions

Offset changed to 0 by Vincenzo Librandi, Apr 16 2011

A134502 a(n) = Fibonacci(7n + 4).

Original entry on oeis.org

3, 89, 2584, 75025, 2178309, 63245986, 1836311903, 53316291173, 1548008755920, 44945570212853, 1304969544928657, 37889062373143906, 1100087778366101931, 31940434634990099905, 927372692193078999176, 26925748508234281076009
Offset: 0

Views

Author

Artur Jasinski, Oct 28 2007

Keywords

Crossrefs

Programs

Formula

From R. J. Mathar, Jul 04 2011: (Start)
G.f.: (-3-2*x) / (-1 + 29*x + x^2).
a(n) = 2*A049667(n) + 3*A049667(n+1). (End)
a(n) = A000045(A017029(n)). - Michel Marcus, Nov 07 2013

Extensions

Offset changed from 1 to 0 by Vincenzo Librandi, Apr 17 2011

A134489 a(n) = Fibonacci(5*n + 2).

Original entry on oeis.org

1, 13, 144, 1597, 17711, 196418, 2178309, 24157817, 267914296, 2971215073, 32951280099, 365435296162, 4052739537881, 44945570212853, 498454011879264, 5527939700884757, 61305790721611591, 679891637638612258
Offset: 0

Views

Author

Artur Jasinski, Oct 28 2007

Keywords

Comments

The o.g.f. of {F(m*n + 2)}_{n>=0}, for m = 1, 2, ..., is
G(m,x) = (1 + F(m - 2)*x) / (1 - L(m)*x + (-1)^m*x^2), with F = A000045 and F(-1) = 1, and L = A000032. - Wolfdieter Lang, Feb 06 2023

Crossrefs

Programs

  • Magma
    [Fibonacci(5*n+2): n in [0..50]]; // Vincenzo Librandi, Apr 20 2011
  • Mathematica
    Table[Fibonacci[5n + 2], {n, 0, 30}]
    LinearRecurrence[{11,1},{1,13},20] (* Harvey P. Dale, May 05 2022 *)

Formula

From R. J. Mathar, Jul 04 2011: (Start)
G.f.: (-1-2*x) / (-1 + 11*x + x^2).
a(n) = 2*A049666(n) + A049666(n+1). (End)
a(n) = A000045(A016873(n)). - Michel Marcus, Nov 05 2013

A305315 a(n) = sqrt(5*b(n)^2 - 4), with b(n) = A134493(n) = Fibonacci(6*n+1), n >= 0.

Original entry on oeis.org

1, 29, 521, 9349, 167761, 3010349, 54018521, 969323029, 17393796001, 312119004989, 5600748293801, 100501350283429, 1803423556807921, 32361122672259149, 580696784543856761, 10420180999117162549, 186982561199565069121, 3355265920593054081629, 60207804009475408400201, 1080385206249964297121989
Offset: 0

Views

Author

Wolfdieter Lang, Jul 10 2018

Keywords

Comments

This sequence gives all solutions of one of two classes of positive proper solutions a(n) = a1(n) of the Pell equation a(n)^2 - 5*b(n) = -4 with b(n) = b1(n) = Fibonacci(6*n+1) = A134493(n). These solutions are obtained from the fundamental positive solution [1, 1] (to be read as a column vector) by application of positive powers of the automorphic matrix A = matrix([9, 20], [4, 9]) with determinant +1.
The other class of positive proper solutions is obtained similarly from the fundamental solution [11,5] and is given by [a5(n), b5(n)], with a5(n) = A305316(n) and b5(n) = A134497(n) = F(6*n+5), with the Fibonacci numbers F = A000045.
The remaining positive solutions are improper and are obtained by application of the same matrix A on the fundamental improper solution [4, 2]. They are given by [a3(n), b3(n)], with a3(n) = 4*A049629(n) and b3(n) = A134495(n) = 2*A007805(n).
Via the Cayley-Hamilton theorem the powers of the automorphic matrix A are: A^n = matrix([S(n) - 9*S(n-1), 20*S(n-1)], [4*S(n-1), S(n) - 9*S(n-1)]) with the Chebyshev polynomials S(n-1) = S(n-1, x=18) = A049660(n), n >= 0.
This shows that ordered Markoff (Markov) triples [1, y, m], with 1 <= y <= m, have for m from the union of sets {m1(k)}{k>=0} U {m5(k)}{k>=0) U {m3(k)}_{k>=0)}, with mj(k) = F(6*k+j), for j = 1, 5, and 3, the unique solutions yj(k) = (3*F(6*k+j) - aj(k))/2 < mj(k), namely y1(k) = F(6*k-1) = A134497(k-1) with F(-1) = 1, y5(k) = F(6*k+3) = A134495(k) and y3(k) = F(6*k+1) = A134493. The solutions with the + sign are excluded because they are > mj(k). This trisection of the odd-indexed Fibonacci numbers as m numbers shows again the well known fact that each of them appears as largest member in a Markoff triple if the smallest member is x = 1. The positions of the odd-indexed Fibonacci numbers in the Markoff sequence A002559 are given in A158381. The conjecture in this case is that the odd-indexed Fibonacci numbers appear as largest numbers only in the ordered Markov triples with x = 1. See, e.g., the Aigner reference for the general Frobenius-Markoff conjecture.
Also Lucas numbers that are congruent to 1 mod 4. - Fred Patrick Doty, Aug 03 2020

Examples

			The solutions of the first class of positive proper solutions [a1(n), b1(n)] of the Pell equation  a^2 - 5*b^2 = -4  begin: [1, 1], [29, 13], [521, 233], [9349, 4181], [167761, 75025], [3010349, 1346269], [54018521, 24157817], ...
The solutions of the second class of positive proper solutions [a5(n), b5(n)] begin: [11, 5], [199, 89], [3571, 1597], [64079, 28657], [1149851, 514229], [20633239, 9227465], [370248451, 165580141], ...
The solutions of the class of improper positive solutions [a3(n), b3(n)] begin: [4, 2], [76, 34], [1364, 610], [24476, 10946], [439204, 196418], [7881196, 3524578], [141422324, 63245986], ...
		

References

  • Aigner, Martin. Markov's theorem and 100 years of the uniqueness conjecture. A mathematical journey from irrational numbers to perfect matchings. Springer, 2013.

Crossrefs

Programs

  • Mathematica
    Select[LinearRecurrence[{1, 1}, {1, 3}, 115], Mod[#, 4] == 1 &] (* Fred Patrick Doty, Aug 03 2020 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+11*x)/(1-18*x+x^2)) \\ Altug Alkan, Jul 11 2018

Formula

a(n) = sqrt(5*(F(6*n+1))^2 - 4), with F(6*n+1) = A134493(n), n >= 0.
a(n) = S(n, 18) + 11*S(n-1, 18), n >= 0, with the Chebyshev polynomials S(n, 18) = A049660(n+1) and S(-1, 18) = 0.
a(n) = 18*a(n-1) - a(n-2), n >= 1, with a(0)=1 and a(-1) = -11.
G.f.: (1 + 11*x)/(1 - 18*x + x^2).
a(n) = 2*sinh((6*n + 1)*arccsch(2)). - Peter Luschny, May 25 2022
Showing 1-10 of 11 results. Next