A305316
a(n) = sqrt(5*b(n)^2 - 4) with b(n) = Fibonacci(6*n+5) = A134497(n).
Original entry on oeis.org
11, 199, 3571, 64079, 1149851, 20633239, 370248451, 6643838879, 119218851371, 2139295485799, 38388099893011, 688846502588399, 12360848946698171, 221806434537978679, 3980154972736918051, 71420983074726546239, 1281597540372340914251, 22997334743627409910279, 412670427844921037470771, 7405070366464951264563599, 132878596168524201724674011
Offset: 0
See A305315 for the three classes of solutions of this Pell equation
-
I:=[11, 199]; [n le 2 select I[n] else 18*Self(n-1)-Self(n-2): n in [1..25]]; // Vincenzo Librandi, Jul 22 2018
-
f[n_] := Sqrt[5 Fibonacci[6 n + 5]^2 - 4]; Array[f, 17, 0] (* or *)
CoefficientList[ Series[(x + 11)/(x^2 - 18x + 1), {x, 0, 18}], x] (* or *)
LinearRecurrence[{18, -1}, {11, 199}, 18] (* Robert G. Wilson v, Jul 21 2018 *)
-
x='x+O('x^99); Vec((11+x)/(1-18*x+x^2)) \\ Altug Alkan, Jul 11 2018
A134492
a(n) = Fibonacci(6*n).
Original entry on oeis.org
0, 8, 144, 2584, 46368, 832040, 14930352, 267914296, 4807526976, 86267571272, 1548008755920, 27777890035288, 498454011879264, 8944394323791464, 160500643816367088, 2880067194370816120, 51680708854858323072, 927372692193078999176, 16641027750620563662096
Offset: 0
Cf.
A000032,
A000045,
A008588,
A049660,
A079343,
A014445,
A014448,
A134493,
A134494,
A134495,
A103134,
A134497,
A134498.
-
[Fibonacci(6*n): n in [0..100]]; // Vincenzo Librandi, Apr 17 2011
-
Table[Fibonacci[6n], {n, 0, 30}]
LinearRecurrence[{18,-1},{0,8},30] (* Harvey P. Dale, Aug 15 2017 *)
-
numlib::fibonacci(6*n) $ n = 0..25; // Zerinvary Lajos, May 09 2008
-
a(n)=fibonacci(6*n) \\ Charles R Greathouse IV, Sep 16 2015
-
concat(0, Vec(8*x/(1-18*x+x^2) + O(x^20))) \\ Colin Barker, Jan 24 2016
-
[fibonacci(6*n) for n in range(0, 17)] # Zerinvary Lajos, May 15 2009
A103134
a(n) = Fibonacci(6n+4).
Original entry on oeis.org
3, 55, 987, 17711, 317811, 5702887, 102334155, 1836311903, 32951280099, 591286729879, 10610209857723, 190392490709135, 3416454622906707, 61305790721611591, 1100087778366101931, 19740274219868223167, 354224848179261915075, 6356306993006846248183
Offset: 0
Cf.
A000032,
A000045,
A001906,
A001519,
A015448,
A014445,
A033888,
A033889,
A033890,
A033891,
A049310,
A049660,
A102312,
A099100,
A134490,
A134491,
A134492,
A134493,
A134494,
A134495,
A103134,
A134497,
A134498,
A134499,
A134500,
A134501,
A134502,
A134503,
A134504.
-
[Fibonacci(6*n +4): n in [0..100]]; // Vincenzo Librandi, Apr 17 2011
-
Table[Fibonacci[6n+4], {n, 0, 30}]
LinearRecurrence[{18,-1},{3,55},20] (* Harvey P. Dale, Mar 29 2023 *)
Table[ChebyshevU[3*n+1, 3/2], {n, 0, 20}] (* Vaclav Kotesovec, May 27 2023 *)
-
a(n)=fibonacci(6*n+4) \\ Charles R Greathouse IV, Feb 05 2013
A134493
a(n) = Fibonacci(6*n+1).
Original entry on oeis.org
1, 13, 233, 4181, 75025, 1346269, 24157817, 433494437, 7778742049, 139583862445, 2504730781961, 44945570212853, 806515533049393, 14472334024676221, 259695496911122585, 4660046610375530309, 83621143489848422977, 1500520536206896083277, 26925748508234281076009
Offset: 0
A167808
Numerator of x(n), where x(n) = x(n-1) + x(n-2) with x(0)=0, x(1)=1/2.
Original entry on oeis.org
0, 1, 1, 1, 3, 5, 4, 13, 21, 17, 55, 89, 72, 233, 377, 305, 987, 1597, 1292, 4181, 6765, 5473, 17711, 28657, 23184, 75025, 121393, 98209, 317811, 514229, 416020, 1346269, 2178309, 1762289, 5702887, 9227465, 7465176, 24157817, 39088169, 31622993
Offset: 0
-
a:=[0,1,1,1,3,5];; for n in [7..40] do a[n]:=4*a[n-3]+a[n-6]; od; a; # Muniru A Asiru, Oct 16 2018
-
nmax:=39; x(0):=0: x(1):=1/2:for n from 2 to nmax do x(n):=x(n-1)+x(n-2) od: for n from 0 to nmax do a(n):= numer(x(n)) od: seq(a(n),n=0..nmax); # Johannes W. Meijer, Jul 01 2010
with(combinat):f:=n->fibonacci(n):L:=n->f(n)+2*f(n-1):seq(numer(f(n)/L(n)), n=0..39); # Gary Detlefs, Dec 11 2010
-
f[n_]:=Numerator[Fibonacci[n]/Fibonacci[n+3]];Array[f,100,0] (* Vladimir Joseph Stephan Orlovsky, Feb 17 2011*)
Numerator[LinearRecurrence[{1,1},{0,1/2},40]] (* Harvey P. Dale, Aug 08 2014 *)
CoefficientList[Series[-x (1 + x + x^2 - x^3 + x^4)/((x^2 + x - 1) (x^4 - x^3 + 2 x^2 + x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 08 2014 *)
LinearRecurrence[{0, 0, 4, 0, 0, 1},{0, 1, 1, 1, 3, 5},40] (* Ray Chandler, Aug 03 2015 *)
a[n_]:=If[Mod[n,3]==0, Fibonacci[n]/2, Fibonacci[n]]; Array[a, 40, 0] (* Stefano Spezia, Oct 16 2018 *)
A134504
a(n) = Fibonacci(7n + 6).
Original entry on oeis.org
8, 233, 6765, 196418, 5702887, 165580141, 4807526976, 139583862445, 4052739537881, 117669030460994, 3416454622906707, 99194853094755497, 2880067194370816120, 83621143489848422977, 2427893228399975082453
Offset: 0
Cf.
A000045,
A001906,
A001519,
A033887,
A015448,
A014445,
A033888,
A033889,
A033890,
A033891,
A102312,
A099100,
A134490,
A134491,
A134492,
A134493,
A134494,
A134495,
A103134,
A134497,
A134498,
A134499,
A134500,
A134501,
A134502,
A134503,
A134504.
-
[Fibonacci(7*n +6): n in [0..100]]; // Vincenzo Librandi, Apr 17 2011
-
Table[Fibonacci[7n+6], {n, 0, 30}]
LinearRecurrence[{29,1},{8,233},20] (* Harvey P. Dale, Jul 21 2021 *)
-
a(n)=fibonacci(7*n+6) \\ Charles R Greathouse IV, Jun 11 2015
A134501
a(n) = Fibonacci(7n + 3).
Original entry on oeis.org
2, 55, 1597, 46368, 1346269, 39088169, 1134903170, 32951280099, 956722026041, 27777890035288, 806515533049393, 23416728348467685, 679891637638612258, 19740274219868223167, 573147844013817084101, 16641027750620563662096
Offset: 0
Cf.
A000045,
A001906,
A001519,
A033887,
A015448,
A014445,
A033888,
A033889,
A033890,
A033891,
A102312,
A099100,
A134490-
A134495,
A103134,
A134497 -
A134504.
A134502
a(n) = Fibonacci(7n + 4).
Original entry on oeis.org
3, 89, 2584, 75025, 2178309, 63245986, 1836311903, 53316291173, 1548008755920, 44945570212853, 1304969544928657, 37889062373143906, 1100087778366101931, 31940434634990099905, 927372692193078999176, 26925748508234281076009
Offset: 0
Cf.
A000045,
A001906,
A001519,
A033887,
A015448,
A014445,
A033888,
A033889,
A033890,
A033891,
A102312,
A099100,
A134490-
A134495,
A103134,
A134497-
A134504.
A134489
a(n) = Fibonacci(5*n + 2).
Original entry on oeis.org
1, 13, 144, 1597, 17711, 196418, 2178309, 24157817, 267914296, 2971215073, 32951280099, 365435296162, 4052739537881, 44945570212853, 498454011879264, 5527939700884757, 61305790721611591, 679891637638612258
Offset: 0
Cf.
A000045,
A001906,
A001519,
A033887,
A015448,
A014445,
A033888-
A033891,
A102312,
A099100,
A134490-
A134495,
A103134,
A134497-
A134504.
-
[Fibonacci(5*n+2): n in [0..50]]; // Vincenzo Librandi, Apr 20 2011
-
Table[Fibonacci[5n + 2], {n, 0, 30}]
LinearRecurrence[{11,1},{1,13},20] (* Harvey P. Dale, May 05 2022 *)
A305315
a(n) = sqrt(5*b(n)^2 - 4), with b(n) = A134493(n) = Fibonacci(6*n+1), n >= 0.
Original entry on oeis.org
1, 29, 521, 9349, 167761, 3010349, 54018521, 969323029, 17393796001, 312119004989, 5600748293801, 100501350283429, 1803423556807921, 32361122672259149, 580696784543856761, 10420180999117162549, 186982561199565069121, 3355265920593054081629, 60207804009475408400201, 1080385206249964297121989
Offset: 0
The solutions of the first class of positive proper solutions [a1(n), b1(n)] of the Pell equation a^2 - 5*b^2 = -4 begin: [1, 1], [29, 13], [521, 233], [9349, 4181], [167761, 75025], [3010349, 1346269], [54018521, 24157817], ...
The solutions of the second class of positive proper solutions [a5(n), b5(n)] begin: [11, 5], [199, 89], [3571, 1597], [64079, 28657], [1149851, 514229], [20633239, 9227465], [370248451, 165580141], ...
The solutions of the class of improper positive solutions [a3(n), b3(n)] begin: [4, 2], [76, 34], [1364, 610], [24476, 10946], [439204, 196418], [7881196, 3524578], [141422324, 63245986], ...
- Aigner, Martin. Markov's theorem and 100 years of the uniqueness conjecture. A mathematical journey from irrational numbers to perfect matchings. Springer, 2013.
-
Select[LinearRecurrence[{1, 1}, {1, 3}, 115], Mod[#, 4] == 1 &] (* Fred Patrick Doty, Aug 03 2020 *)
-
my(x='x+O('x^20)); Vec((1+11*x)/(1-18*x+x^2)) \\ Altug Alkan, Jul 11 2018
Showing 1-10 of 11 results.
Comments