cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A305316 a(n) = sqrt(5*b(n)^2 - 4) with b(n) = Fibonacci(6*n+5) = A134497(n).

Original entry on oeis.org

11, 199, 3571, 64079, 1149851, 20633239, 370248451, 6643838879, 119218851371, 2139295485799, 38388099893011, 688846502588399, 12360848946698171, 221806434537978679, 3980154972736918051, 71420983074726546239, 1281597540372340914251, 22997334743627409910279, 412670427844921037470771, 7405070366464951264563599, 132878596168524201724674011
Offset: 0

Views

Author

Wolfdieter Lang, Jul 10 2018

Keywords

Comments

This sequence gives all solutions of one of two classes of positive proper solutions a(n) = a5(n) of the Pell equation a(n)^2 - 5*b(n) = -4 with b(n) = b5(n) = F(6*n+5) = A134497(n), with the Fibonacci numbers F = A000045. These solutions are obtained from the fundamental positive solution [11, 5] (to be read as a column vector) by application of positive powers of the automorphic matrix A = matrix([9, 20], [4, 9]) of determinant +1.
The other class of positive proper solutions is obtained similarly from the fundamental solution [1,1] and is given by [a1(n), b1(n)], with a1(n) = A305315(n) and b1(n) = A134493(n) = F(6*n+1).
The remaining positive solutions are improper and are obtained by application of positive powers of the same matrix A on the fundamental improper solution [4, 2]. They are given by [a3(n), b3(n)], with a3(n) = F(6*n+3) = 4* A049629(n) and b3(n) = A134495(n) = 2*A007805(n).
For the explicit form of powers of the automorphic matrix A in terms of Chebyshev polynomials S(n, 18) see a comment in A305315.
The relation to a proof using this Pell equation of the well known fact that each odd-indexed Fibonacci number appears as largest member in Markoff (Markov) triples with smallest member 1 see also A305315.

Examples

			See A305315 for the three classes of solutions of this Pell equation
		

Crossrefs

Programs

  • Magma
    I:=[11, 199]; [n le 2 select I[n] else 18*Self(n-1)-Self(n-2): n in [1..25]]; // Vincenzo Librandi, Jul 22 2018
  • Mathematica
    f[n_] := Sqrt[5 Fibonacci[6 n + 5]^2 - 4]; Array[f, 17, 0] (* or *)
    CoefficientList[ Series[(x + 11)/(x^2 - 18x + 1), {x, 0, 18}], x] (* or *)
    LinearRecurrence[{18, -1}, {11, 199}, 18] (* Robert G. Wilson v, Jul 21 2018 *)
  • PARI
    x='x+O('x^99); Vec((11+x)/(1-18*x+x^2)) \\ Altug Alkan, Jul 11 2018
    

Formula

a(n) = sqrt(5*(F(6*n+5))^2 - 4), with F(6*n+5) = A134497(n), n >= 0.
a(n) = 11*S(n, 18) + S(n-1, 18), n >= 0, with the Chebyshev polynomials S(n, 18) = A049660(n+1) and S(-1, 18) = 0.
a(n) = 18*a(n-1) - a(n-2), n >= 1, with a(-1) = -1 and a(0) = 11.
G.f.: (11 + x)/(1 - 18*x + x^2).

A105073 Define a(1)=0, a(2)=2 then a(n) = 3*a(n-1) - a(n-2), a(n+1) = 3*a(n)-a(n-1) and a(n+2) = 3*a(n+1) - a(n) + 2.

Original entry on oeis.org

0, 2, 6, 16, 44, 116, 304, 798, 2090, 5472, 14328, 37512, 98208, 257114, 673134, 1762288, 4613732, 12078908, 31622992, 82790070, 216747218, 567451584, 1485607536, 3889371024, 10182505536, 26658145586, 69791931222, 182717648080, 478361013020, 1252365390980
Offset: 1

Views

Author

Pierre CAMI, Apr 06 2005

Keywords

Comments

From Jon E. Schoenfield, Jan 18 2019: (Start)
Previously, the Name had included the comment, "This sequence is such that 20*(a(n)^2) + 20*a(n) + 1 = j^2 = a square."
However, Anthony Hernandez observed that this statement is not true for all terms; e.g., at a(4)=16, 20*16^2 + 20*16 + 1 = 5441, a nonsquare.
It is true that 20*a(n)^2 + 20*a(n) + 1 = A305315(n/3)^2 when n == 0 (mod 3) and A305316((n-2)/3)^2 when n == 2 (mod 3); however, for n == 1 (mod 3) with n > 1, sqrt(20*a(n)^2 + 20*a(n) + 1) is a noninteger number whose fractional part apparently approaches 3 - sqrt(5) as n increases, and Andrey Zabolotskiy observes that round(sqrt(20*a(n)^2 + 20*a(n) + 1) + sqrt(5)) appears to be equal to A002878(n). (End)

Crossrefs

Programs

  • Magma
    I:=[0,2,6,16,44]; [n le 5 select I[n] else 3*Self(n-1) - Self(n-2) + Self(n-3) - 3*Self(n-4) + Self(n-5): n in [1..35]]; // Vincenzo Librandi, Jan 13 2019
  • Mathematica
    a[n_]:=(1/6)*(Fibonacci[2*n+4] - 2*Fibonacci[2*n] - 2*Cos[(n+2)*(2*Pi/3)] - 4 ); Array[a,50] (* Stefano Spezia, Jan 11 2019 *)
    RecurrenceTable[{a[1]==0, a[2]==2, a[3]==6, a[4]==16, a[5]==44, a[n]== 3 a[n-1] - a[n-2] + a[n-3] - 3 a[n-4] + a[n-5]}, a, {n, 35}] (* Vincenzo Librandi, Jan 13 2019 *)

Formula

a(n) = (1/6)*(Fibonacci(2n+4) - 2*Fibonacci(2n) - 2*cos((n+2)(2*Pi/3)) - 4). - Ralf Stephan, May 20 2007
From R. J. Mathar, Nov 13 2009: (Start)
a(n) = 3*a(n-1) - a(n-2) + a(n-3) - 3*a(n-4) + a(n-5).
G.f.: 2*x^2/((1-x) * (1+x+x^2) * (1-3*x+x^2)).
a(n) = A061347(n+2)/6 + A001519(n+2)/2 - 2/3. (End)
a(n) = floor(A027941(n)/2). - Anthony Hernandez, Jan 03 2019

Extensions

Extended by R. J. Mathar, Nov 13 2009
Showing 1-2 of 2 results.