cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A305315 a(n) = sqrt(5*b(n)^2 - 4), with b(n) = A134493(n) = Fibonacci(6*n+1), n >= 0.

Original entry on oeis.org

1, 29, 521, 9349, 167761, 3010349, 54018521, 969323029, 17393796001, 312119004989, 5600748293801, 100501350283429, 1803423556807921, 32361122672259149, 580696784543856761, 10420180999117162549, 186982561199565069121, 3355265920593054081629, 60207804009475408400201, 1080385206249964297121989
Offset: 0

Views

Author

Wolfdieter Lang, Jul 10 2018

Keywords

Comments

This sequence gives all solutions of one of two classes of positive proper solutions a(n) = a1(n) of the Pell equation a(n)^2 - 5*b(n) = -4 with b(n) = b1(n) = Fibonacci(6*n+1) = A134493(n). These solutions are obtained from the fundamental positive solution [1, 1] (to be read as a column vector) by application of positive powers of the automorphic matrix A = matrix([9, 20], [4, 9]) with determinant +1.
The other class of positive proper solutions is obtained similarly from the fundamental solution [11,5] and is given by [a5(n), b5(n)], with a5(n) = A305316(n) and b5(n) = A134497(n) = F(6*n+5), with the Fibonacci numbers F = A000045.
The remaining positive solutions are improper and are obtained by application of the same matrix A on the fundamental improper solution [4, 2]. They are given by [a3(n), b3(n)], with a3(n) = 4*A049629(n) and b3(n) = A134495(n) = 2*A007805(n).
Via the Cayley-Hamilton theorem the powers of the automorphic matrix A are: A^n = matrix([S(n) - 9*S(n-1), 20*S(n-1)], [4*S(n-1), S(n) - 9*S(n-1)]) with the Chebyshev polynomials S(n-1) = S(n-1, x=18) = A049660(n), n >= 0.
This shows that ordered Markoff (Markov) triples [1, y, m], with 1 <= y <= m, have for m from the union of sets {m1(k)}{k>=0} U {m5(k)}{k>=0) U {m3(k)}_{k>=0)}, with mj(k) = F(6*k+j), for j = 1, 5, and 3, the unique solutions yj(k) = (3*F(6*k+j) - aj(k))/2 < mj(k), namely y1(k) = F(6*k-1) = A134497(k-1) with F(-1) = 1, y5(k) = F(6*k+3) = A134495(k) and y3(k) = F(6*k+1) = A134493. The solutions with the + sign are excluded because they are > mj(k). This trisection of the odd-indexed Fibonacci numbers as m numbers shows again the well known fact that each of them appears as largest member in a Markoff triple if the smallest member is x = 1. The positions of the odd-indexed Fibonacci numbers in the Markoff sequence A002559 are given in A158381. The conjecture in this case is that the odd-indexed Fibonacci numbers appear as largest numbers only in the ordered Markov triples with x = 1. See, e.g., the Aigner reference for the general Frobenius-Markoff conjecture.
Also Lucas numbers that are congruent to 1 mod 4. - Fred Patrick Doty, Aug 03 2020

Examples

			The solutions of the first class of positive proper solutions [a1(n), b1(n)] of the Pell equation  a^2 - 5*b^2 = -4  begin: [1, 1], [29, 13], [521, 233], [9349, 4181], [167761, 75025], [3010349, 1346269], [54018521, 24157817], ...
The solutions of the second class of positive proper solutions [a5(n), b5(n)] begin: [11, 5], [199, 89], [3571, 1597], [64079, 28657], [1149851, 514229], [20633239, 9227465], [370248451, 165580141], ...
The solutions of the class of improper positive solutions [a3(n), b3(n)] begin: [4, 2], [76, 34], [1364, 610], [24476, 10946], [439204, 196418], [7881196, 3524578], [141422324, 63245986], ...
		

References

  • Aigner, Martin. Markov's theorem and 100 years of the uniqueness conjecture. A mathematical journey from irrational numbers to perfect matchings. Springer, 2013.

Crossrefs

Programs

  • Mathematica
    Select[LinearRecurrence[{1, 1}, {1, 3}, 115], Mod[#, 4] == 1 &] (* Fred Patrick Doty, Aug 03 2020 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+11*x)/(1-18*x+x^2)) \\ Altug Alkan, Jul 11 2018

Formula

a(n) = sqrt(5*(F(6*n+1))^2 - 4), with F(6*n+1) = A134493(n), n >= 0.
a(n) = S(n, 18) + 11*S(n-1, 18), n >= 0, with the Chebyshev polynomials S(n, 18) = A049660(n+1) and S(-1, 18) = 0.
a(n) = 18*a(n-1) - a(n-2), n >= 1, with a(0)=1 and a(-1) = -11.
G.f.: (1 + 11*x)/(1 - 18*x + x^2).
a(n) = 2*sinh((6*n + 1)*arccsch(2)). - Peter Luschny, May 25 2022

A105073 Define a(1)=0, a(2)=2 then a(n) = 3*a(n-1) - a(n-2), a(n+1) = 3*a(n)-a(n-1) and a(n+2) = 3*a(n+1) - a(n) + 2.

Original entry on oeis.org

0, 2, 6, 16, 44, 116, 304, 798, 2090, 5472, 14328, 37512, 98208, 257114, 673134, 1762288, 4613732, 12078908, 31622992, 82790070, 216747218, 567451584, 1485607536, 3889371024, 10182505536, 26658145586, 69791931222, 182717648080, 478361013020, 1252365390980
Offset: 1

Views

Author

Pierre CAMI, Apr 06 2005

Keywords

Comments

From Jon E. Schoenfield, Jan 18 2019: (Start)
Previously, the Name had included the comment, "This sequence is such that 20*(a(n)^2) + 20*a(n) + 1 = j^2 = a square."
However, Anthony Hernandez observed that this statement is not true for all terms; e.g., at a(4)=16, 20*16^2 + 20*16 + 1 = 5441, a nonsquare.
It is true that 20*a(n)^2 + 20*a(n) + 1 = A305315(n/3)^2 when n == 0 (mod 3) and A305316((n-2)/3)^2 when n == 2 (mod 3); however, for n == 1 (mod 3) with n > 1, sqrt(20*a(n)^2 + 20*a(n) + 1) is a noninteger number whose fractional part apparently approaches 3 - sqrt(5) as n increases, and Andrey Zabolotskiy observes that round(sqrt(20*a(n)^2 + 20*a(n) + 1) + sqrt(5)) appears to be equal to A002878(n). (End)

Crossrefs

Programs

  • Magma
    I:=[0,2,6,16,44]; [n le 5 select I[n] else 3*Self(n-1) - Self(n-2) + Self(n-3) - 3*Self(n-4) + Self(n-5): n in [1..35]]; // Vincenzo Librandi, Jan 13 2019
  • Mathematica
    a[n_]:=(1/6)*(Fibonacci[2*n+4] - 2*Fibonacci[2*n] - 2*Cos[(n+2)*(2*Pi/3)] - 4 ); Array[a,50] (* Stefano Spezia, Jan 11 2019 *)
    RecurrenceTable[{a[1]==0, a[2]==2, a[3]==6, a[4]==16, a[5]==44, a[n]== 3 a[n-1] - a[n-2] + a[n-3] - 3 a[n-4] + a[n-5]}, a, {n, 35}] (* Vincenzo Librandi, Jan 13 2019 *)

Formula

a(n) = (1/6)*(Fibonacci(2n+4) - 2*Fibonacci(2n) - 2*cos((n+2)(2*Pi/3)) - 4). - Ralf Stephan, May 20 2007
From R. J. Mathar, Nov 13 2009: (Start)
a(n) = 3*a(n-1) - a(n-2) + a(n-3) - 3*a(n-4) + a(n-5).
G.f.: 2*x^2/((1-x) * (1+x+x^2) * (1-3*x+x^2)).
a(n) = A061347(n+2)/6 + A001519(n+2)/2 - 2/3. (End)
a(n) = floor(A027941(n)/2). - Anthony Hernandez, Jan 03 2019

Extensions

Extended by R. J. Mathar, Nov 13 2009
Showing 1-2 of 2 results.