cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A001076 Denominators of continued fraction convergents to sqrt(5).

Original entry on oeis.org

0, 1, 4, 17, 72, 305, 1292, 5473, 23184, 98209, 416020, 1762289, 7465176, 31622993, 133957148, 567451585, 2403763488, 10182505537, 43133785636, 182717648081, 774004377960, 3278735159921, 13888945017644, 58834515230497, 249227005939632, 1055742538989025
Offset: 0

Views

Author

Keywords

Comments

a(2*n+1) with b(2*n+1) := A001077(2*n+1), n >= 0, give all (positive integer) solutions to Pell equation b^2 - 5*a^2 = -1, a(2*n) with b(2*n) := A001077(2*n), n >= 1, give all (positive integer) solutions to Pell equation b^2 - 5*a^2 = +1 (cf. Emerson reference).
Bisection: a(2*n+1) = T(2*n+1, sqrt(5))/sqrt(5) = A007805(n), n >= 0 and a(2*n) = 4*S(n-1,18), n >= 0, with T(n,x), resp. S(n,x), Chebyshev's polynomials of the first, resp. second kind. S(-1,x)=0. See A053120, resp. A049310. S(n,18)=A049660(n+1). - Wolfdieter Lang, Jan 10 2003
Apart from initial terms, this is the Pisot sequence E(4,17), a(n) = floor(a(n-1)^2/a(n-2) + 1/2).
This is also the Horadam sequence (0,1,1,4), having the recurrence relation a(n) = s*a(n-1) + r*a(n-2); for n > 1, where a(0) = 0, a(1) = 1, s = 4, r = 1. a(n) / a(n-1) converges to 5^1/2 + 2 as n approaches infinity. 5^(1/2) + 2 can also be written as (2 * Phi) + 1 and Phi^2 + Phi. - Ross La Haye, Aug 18 2003
Numerators of continued fraction [4, 4, 4, ...], where the convergents to [4, 4, 4, ...] = (4/1, 17/4, 72/17, ...). Let X = the 2 X 2 matrix [0, 1; 1, 4]; then X^n = [a(n-1), a(n); a(n), a(n+1)]; e.g., X^3 = [4, 17; 17, 72]. Let C = the limit of a(n)/a(n-1) = 2 + sqrt(5) = 4.236067977...; then C^n = a(n+1) + (1/C)*a(n), where (1/C) = 0.236067977... . Example: C^3 = 76.01315556..., = 72 + 17*(0.2360679...). - Gary W. Adamson, Dec 15 2007, corrected by Greg Dresden, Sep 16 2019, corrected by Alex Mark, Jul 21 2020
Sqrt(5) = 4/2 + 4/17 + 4/(17*305) + 4/(305*5473) + 4/(5473*98209) + ... . - Gary W. Adamson, Dec 15 2007
a(p) == 20^((p-1)/2) (mod p) for odd primes p. - Gary W. Adamson, Feb 22 2009
a(n) = A167808(3*n). - Reinhard Zumkeller, Nov 12 2009
For n >= 2, a(n) equals the permanent of the (n-1) X (n-1) tridiagonal matrix with 4's along the main diagonal and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
Moreover, a(n) is the second binomial transform of (0,1,0,5,0,25,...) (see also A033887). This fact can be proved similarly like the proof of Paul Barry's remark in A033887 by using the following scaling identity for delta-Fibonacci numbers: y^n b(n;x/y) = Sum_{k=0..n} binomial(n,k) (y-1)^(n-k) b(k;x) and the fact that b(n;2) = (1-(-1)^n) 5^floor(n/2). - Roman Witula, Jul 12 2012
Binomial transform of 0, 1, 2, 8, 24, 80, 256, ... (A063727 with offset 1). - R. J. Mathar, Feb 05 2014
For n >= 1, a(n) equals the number of words of length n-1 on alphabet {0,1,...,4} avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015
With offset 1 is the INVERT transform of A006190: (1, 3, 10, 33, 109, 360, ...). - Gary W. Adamson, Jul 24 2015
From Rogério Serôdio, Mar 30 2018: (Start)
This is a divisibility sequence (i.e., if n|m then a(n)|a(m)).
gcd(a(n),a(n+k)) = a(gcd(n, k)) for all positive integers n and k. (End)
The initial 0 of this sequence is in contradiction with the fact that 0 is no valid denominator and according to all standard references, the first convergent of a continued fraction is p(0)/q(0) = b(0)/1 where b(0) is the first term of the continued fraction, given by the integer part of the number. One may artificially define q(-1) = 0 to have a recurrent relation q(n) = b(n)*q(n-1) + q(n-2), n >= 1, but then its index should be -1. - M. F. Hasler, Nov 01 2019
Number of 4-compositions of n restricted to odd parts (and allowed zeros); see Hopkins & Ouvry reference. - Brian Hopkins, Aug 17 2020
From Michael A. Allen, Feb 15 2023: (Start)
Also called the 4-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n+1) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 4 kinds of squares available. (End)
a(n) is the smallest nonnegative integer that is the sum of n, but no fewer, Fibonacci numbers including negative-index Fibonacci numbers (A039834), with that sum being a(n) = Sum_{i=0..n-1} A000045(3*i+1). a(n) is also the smallest nonnegative integer that is the sum of n, but no fewer, terms each of which is either a Fibonacci number or the negative of a Fibonacci number. (See A027941 for negatives disallowed.) - Mike Speciner, Oct 08 2023
From Enrique Navarrete, Dec 16 2023: (Start)
a(n) is the number of compositions of n when there are P(k) sorts of parts k, with k,n > = 1, where P(k) = A006190(k) is the k-th 3-metallonacci number (see example below).
In general, the number of compositions with k-metallonacci number of parts is counted by the (k+1)-st metallonacci sequence (note k=1 and k=2 are the Fibonacci and the Pell numbers, respectively). (End).
a(n) is the number of tilings of a 2 X n rectangle missing the top right 1 X 1 cell, using 1 X 1 squares, dominoes and right trominoes. Compare to A110679 which is the same problem but without the missing top right cell. - Greg Dresden and Yilin Zhu, Jul 10 2025

Examples

			1 2 9 38 161 (A001077)
-,-,-,--,---, ...
0 1 4 17 72 (A001076)
G.f. = x + 4*x^2 + 17*x^3 + 72*x^4 + 305*x^5 + 1292*x^6 + 5473*x^7 + 23184*x^8 + ...
From _Enrique Navarrete_, Dec 16 2023: (Start)
From the comment on compositions with 3-metallonacci sorts of parts, A006190(k), there are A006190(1)=1 type of 1, A006190(2)=3 types of 2, A006190(3)=10 types of 3, A006190(4)=33 types of 4, A006190(5)=109 types of 5 and A006190(6)=360 types of 6. The following table gives the number of compositions of n=6:
Composition, number of such compositions, number of compositions of this type:
 6,              1,      360;
 5+1,            2,      218;
 4+2,            2,      198;
 3+3,            1,      100;
 4+1+1,          3,       99;
 3+2+1,          6,      180;
 2+2+2,          1,       27;
 3+1+1+1,        4,       40;
 2+2+1+1,        6,       54;
 2+1+1+1+1,      5,       15;
 1+1+1+1+1+1,    1,        1;
for a total of a(6)=1292 compositions of n=6. (End)
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 23.
  • S. Koshkin, Non-classical linear divisibility sequences ..., Fib. Q., 57 (No. 1, 2019), 68-80. See Table 1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • V. Thébault, Les Récréations Mathématiques. Gauthier-Villars, Paris, 1952, p. 282.

Crossrefs

Row n=4 of A073133, A172236 and A352361.
Cf. A000045, A001077, A015448, A175183 (Pisano periods).
Partial sums of A033887. First differences of A049652. Bisection of A059973.
Third column of array A028412.

Programs

  • GAP
    a:=[0,1];; for n in [3..30] do a[n]:=4*a[n-1]+a[n-2]; od; a; # Muniru A Asiru, Mar 31 2018
    
  • Magma
    I:=[0,1]; [n le 2 select I[n] else 4*Self(n-1) + Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 24 2018
    
  • Maple
    A001076:=-1/(-1+4*z+z**2); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Join[{0}, Denominator[Convergents[Sqrt[5], 30]]] (* Harvey P. Dale, Dec 10 2011 *)
    a[ n_] := Fibonacci[3*n] / 2; (* Michael Somos, Feb 23 2014 *)
    a[ n_] := ((2 + Sqrt[5])^n - (2 - Sqrt[5])^n) /(2 Sqrt[5]) // Simplify; (* Michael Somos, Feb 23 2014 *)
    LinearRecurrence[{4, 1}, {0, 1}, 26] (* Jean-François Alcover, Sep 23 2017 *)
    a[ n_] := Fibonacci[n, 4]; (* Michael Somos, Nov 02 2021 *)
  • Maxima
    a(n):=sum(4^(n-1-2*k)*binomial(n-k-1,n-2*k-1),k,0,floor((n)/2));/* Vladimir Kruchinin, Oct 02 2022 */
  • MuPAD
    numlib::fibonacci(3*n)/2 $ n = 0..30; // Zerinvary Lajos, May 09 2008
    
  • PARI
    {a(n) = fibonacci(3*n) / 2}; /* Michael Somos, Aug 11 2009 */
    
  • PARI
    {a(n) = imag( (2 + quadgen(20))^n )}; /* Michael Somos, Feb 23 2014 */
    
  • PARI
    {a(n) = polchebyshev(n-1, 2, 2*I)/I^(n-1)}; /* Michael Somos, Nov 02 2021 */
    
  • Sage
    [lucas_number1(n,4,-1) for n in range(23)] # Zerinvary Lajos, Apr 23 2009
    
  • Sage
    [fibonacci(3*n)/2 for n in range(23)] # Zerinvary Lajos, May 15 2009
    

Formula

a(n) = 4*a(n-1) + a(n-2), n > 1. a(0)=0, a(1)=1.
G.f.: x/(1 - 4*x - x^2).
a(n) = ((2+sqrt(5))^n - (2-sqrt(5))^n)/(2*sqrt(5)).
a(n) = A014445(n)/2 = F(3n)/2.
a(n) = ((-i)^(n-1))*S(n-1, 4*i), with i^2 = -1 and S(n, x) := U(n, x/2) Chebyshev's polynomials of the second kind. See A049310. S(-1, x) = 0.
a(n) = Sum_{i=0..n} Sum_{j=0..n} Fibonacci(i+j)*n!/(i!j!(n-i-j)!)/2. - Paul Barry, Feb 06 2004
E.g.f.: exp(2*x)*sinh(sqrt(5)*x)/sqrt(5). - Vladeta Jovovic, Sep 01 2004
a(n) = F(1) + F(4) + F(7) + ... + F(3n-2), for n > 0.
Conjecture: 2a(n+1) = a(n+2) - A001077(n+1). - Creighton Dement, Nov 28 2004
a(n) = Sum_{k=0..n} Sum_{j=0..n} C(n, j)*C(j, k)*F(j)/2. - Paul Barry, Feb 14 2005
a(n) = A048876(n) - A048875(n). - Creighton Dement, Mar 19 2005
Let M = {{0, 1}, {1, 4}}, v[1] = {0, 1}, v[n] = M.v[n - 1]; then a(n) = v[n][[1]]. - Roger L. Bagula, May 29 2005
a(n) = F(n, 4), the n-th Fibonacci polynomial evaluated at x=4. - T. D. Noe, Jan 19 2006
[A015448(n), a(n)] = [1,4; 1,3]^n * [1,0]. - Gary W. Adamson, Mar 21 2008
a(n) = (Sum_{k=0..n} Fibonacci(3*k-2)) + 1. - Gary Detlefs, Dec 26 2010
a(n) = (3*(-1)^n*F(n) + 5*F(n)^3)/2, n >= 0. See the general D. Jennings formula given in a comment on triangle A111125, where also the reference is given. Here the second (k=1) row [3,1] applies. - Wolfdieter Lang, Sep 01 2012
Sum_{k>=1} (-1)^(k-1)/(a(k)*a(k+1)) = (Sum_{k>=1} (-1)^(k-1)/(F_k*F_(k+1)))^3 = phi^(-3), where F_n is the n-th Fibonacci numbers (A000045) and phi is golden ratio (A001622). - Vladimir Shevelev, Feb 23 2013
G.f.: Q(0)*x/(2-4*x), where Q(k) = 1 + 1/(1 - x*(5*k-4)/(x*(5*k+1) - 2/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Oct 11 2013
a(-n) = -(-1)^n * a(n). - Michael Somos, Feb 23 2014
The o.g.f. A(x) = x/(1 - 4*x - x^2) satisfies A(x) + A(-x) + 8*A(x)*A(-x) = 0 or equivalently (1 + 8*A(x))*(1 + 8*A(-x)) = 1. The o.g.f. for A049660 equals -A(sqrt(x))*A(-sqrt(x)). - Peter Bala, Apr 02 2015
From Rogério Serôdio, Mar 30 2018: (Start)
Some properties:
(1) a(n)*a(n+1) = 4*Sum_{k=1..n} a(k)^2;
(2) a(n)^2 + a(n+1)^2 = a(2*n+1);
(3) a(n)^2 - a(n-2)^2 = 4*a(n-1)*(a(n) + a(n-2));
(4) a(m*(p+1)) = a(m*p)*a(m+1) + a(m*p-1)*a(m);
(5) a(n-k)*a(n+k) = a(n)^2 + (-1)^(n+k+1)*a(k)^2;
(6) a(n-1)*a(n+1) = a(n)^2 + (-1)^n (particular case of (5)!);
(7) a(2*n) = 2*a(n)*(2*a(n) + a(n-1));
(8) 3*Sum_{k=2..n+1} a(k)*a(k-1) is equal to a(n+1)^2 if n odd, and is equal to a(n+1)^2 - 1 if n is even;
(9) a(n) - a(n-2*k+1) = alpha(k)*a(n-2*k+1) + a(n-4*k+2), where alpha(k) = (2+sqrt(5))^(2*k-1) + (2-sqrt(5))^(2*k-1);
(10) 31|Sum_{k=n..n+9} a(k), for all positive n. (End)
O.g.f.: x*exp(Sum_{n >= 1} Lucas(3*n)*x^n/n) = x + 4*x^2 + 17*x^3 + .... - Peter Bala, Oct 11 2019
a(n) = Sum_{k=0..floor(n/2)} 4^(n-2*k-1)*C(n-k-1,n-2*k-1). - Vladimir Kruchinin, Oct 02 2022
a(n) = i^(n-1)*S(n-1, -4*i), with i = sqrt(-1), and the Chebyshev S-polynomials (see A049310) with S(n, -1) = 0. - Gary Detlefs and Wolfdieter Lang, Mar 06 2023
G.f.: x/(1 - 4*x - x^2) = Sum_{n >= 0} x^(n+1) * ( Product_{k = 1..n} (m*k + 4 - m + x)/(1 + m*k*x) ) for arbitrary m (a telescoping series). - Peter Bala, May 08 2024
a(n) = 4^(n-1)*hypergeom([(1-n)/2, 1-n/2], [1-n], -1/4) for n > 0. - Peter Luschny, Mar 30 2025
a(n) = a(n-1) + A110679(n-1) + A110679(n-2) = a(n-1) + Fibonacci(3*n-2). - Greg Dresden and Yilin Zhu, Jul 10 2025

A015448 a(0) = 1, a(1) = 1, and a(n) = 4*a(n-1) + a(n-2) for n >= 2.

Original entry on oeis.org

1, 1, 5, 21, 89, 377, 1597, 6765, 28657, 121393, 514229, 2178309, 9227465, 39088169, 165580141, 701408733, 2971215073, 12586269025, 53316291173, 225851433717, 956722026041, 4052739537881, 17167680177565, 72723460248141, 308061521170129, 1304969544928657, 5527939700884757
Offset: 0

Views

Author

Keywords

Comments

If one deletes the leading 0 in A084326, takes the inverse binomial transform, and adds a(0)=1 in front, one obtains this sequence here. - Al Hakanson (hawkuu(AT)gmail.com), May 02 2009
For n >= 1, row sums of triangle
m |k=0 1 2 3 4 5 6 7
====+=============================================
0 | 1
1 | 1 4
2 | 1 4 16
3 | 1 8 16 64
4 | 1 8 48 64 256
5 | 1 12 48 256 256 1024
6 | 1 12 96 256 1280 1024 4096
7 | 1 16 96 640 1280 6144 4096 16384
which is triangle for numbers 4^k*C(m,k) with duplicated diagonals. - Vladimir Shevelev, Apr 12 2012
a(n) = a(n;-2) = 3^n*Sum_{k=0..n} binomial(n,k)*F(k+1)*(-2/3)^k, where a(n;d), n=0,1,...,d, denotes the delta-Fibonacci numbers defined in comments to A000045 (see also the papers of Witula et al.). We note that (see A033887) F(3n+1) = 3^n*a(n,2/3) = Sum_{k=0..n} binomial(n,k)*F(k-1)*(-2/3)^k, which implies F(3n+1) + 3^(-n)*a(n) = Sum_{k=0..n} binomial(n,k)*L(k)*(-2/3)^k, where L(k) denotes the k-th Lucas number. - Roman Witula, Jul 12 2012
a(n+1) is (for n >= 0) the number of length-n strings of 5 letters {0,1,2,3,4} with no two adjacent nonzero letters identical. The general case (strings of L letters) is the sequence with g.f. (1+x)/(1-(L-1)*x-x^2). - Joerg Arndt, Oct 11 2012
Starting with offset 1 the sequence is the INVERT transform of (1, 4, 4*3, 4*3^2, 4*3^3, ...); i.e., of A003946: (1, 4, 12, 36, 108, ...). - Gary W. Adamson, Aug 06 2016
a(n+1) equals the number of quinary sequences of length n such that no two consecutive terms differ by 3. - David Nacin, May 31 2017

Crossrefs

Cf. A001076, A147722 (INVERT transform), A109499 (INVERTi transform), A154626 (Binomial transform), A086344 (inverse binomial transform), A003946, A049310.

Programs

Formula

a(n) = Fibonacci(3n-1) = ( (1+sqrt(5))*(2-sqrt(5))^n - (1-sqrt(5))*(2+sqrt(5))^n )/ (2*sqrt(5)).
O.g.f.: (1-3*x)/(1-4*x-x^2). - Len Smiley, Dec 09 2001
a(n) = Sum_{k=0..n} 3^k*A055830(n,k). - Philippe Deléham, Oct 18 2006
a(n) = upper left term in the 2 X 2 matrix [1,2; 2,3]^n. - Gary W. Adamson, Mar 02 2008
[a(n), A001076(n)] = [1,4; 1,3]^n * [1,0]. - Gary W. Adamson, Mar 21 2008
a(n) = A167808(3*n-1) for n > 0. - Reinhard Zumkeller, Nov 12 2009
a(n) = Fibonacci(3n+1) mod Fibonacci(3n), n > 0.
a(n) = (A000032(3*n)-Fibonacci(3*n))/2 = (A014448(n)-A014445(n))/2.
For n >= 2, a(n) = F_n(4) + F_(n+1)(4), where F_n(x) is a Fibonacci polynomial (cf. A049310): F_n(x) = Sum_{i=0..floor((n-1)/2)} binomial(n-i-1,i)*x^(n-2*i-1). - Vladimir Shevelev, Apr 13 2012
a(n) = A001076(n+1) - 3*A001076(n). - R. J. Mathar, Jul 12 2012
From Gary Detlefs and Wolfdieter Lang, Aug 20 2012: (Start)
a(n) = (5*F(n)^3 + 5*F(n-1)^3 + 3*(-1)^n*F(n-2))/2,
a(n) = (F(n+1)^3 + 2*F(n)^3 - F(n-2)^3)/2, n >= 0, with F(-1) = 1 and F(-2) = -1. Second line from first one with 3*(-1)^n* F(n-2) = F(n-1)^3 - 4*F(n-2)^3 - F(n-3)^3 (in Koshy's book, p. 89, 32. (with a - sign) and 33. For the Koshy reference see A000045) and the F^3 recurrence (see row n=4 of A055870, or Koshy p. 87, 1.). First line from the preceding R. J. Mathar formula with F(3*n) = 5*F(n)^3 + 3*(-1)^n*F(n) (Koshy p. 89, 46.) and the above mentioned formula, Koshy's 32. and 33., with n -> n+2 in order to eliminate F(n+1)^3. (End)
For n > 0, a(n) = L(n-1)*L(n)*F(n) + F(n+1)*(-1)^n with L(n)=A000032(n). - J. M. Bergot, Dec 10 2015
For n > 1, a(n)^2 is the denominator of continued fraction [4,4,...,4, 6, 4,4,...4], which has n-1 4's before, and n-1 4's after, the middle 6. - Greg Dresden, Sep 18 2019
From Gary Detlefs and Wolfdieter Lang, Mar 06 2023: (Start)
a(n) = A001076(n) + A001076(n-1), with A001076(-1) = 1. See the R. J. Mathar formula above.
a(n+1) = i^n*(S(n-1,-4*i) - i*S(n-2,-4*i)), for n >= 0, with i = sqrt(-1), and the Chebyshev S-polynomials (see A049310) with S(n, -1) = 0. From the simplified Fibonacci trisection formula for {F(3*n+2)}_{n>=0}. (End)
a(n) = Sum_{k=0..n} A046854(n-1,k)*4^k. - R. J. Mathar, Feb 10 2024
E.g.f.: exp(2*x)*(5*cosh(sqrt(5)*x) - sqrt(5)*sinh(sqrt(5)*x))/5. - Stefano Spezia, Jun 03 2024

A033887 a(n) = Fibonacci(3*n + 1).

Original entry on oeis.org

1, 3, 13, 55, 233, 987, 4181, 17711, 75025, 317811, 1346269, 5702887, 24157817, 102334155, 433494437, 1836311903, 7778742049, 32951280099, 139583862445, 591286729879, 2504730781961, 10610209857723, 44945570212853, 190392490709135, 806515533049393, 3416454622906707
Offset: 0

Views

Author

Keywords

Comments

Binomial transform of A063727, and second binomial transform of (1,1,5,5,25,25,...), which is A074872 with offset 0. - Paul Barry, Jul 16 2003
Equals INVERT transform of A104934: (1, 2, 8, 28, 100, 356, ...) and INVERTi transform of A005054: (1, 4, 20, 100, 500, ...). - Gary W. Adamson, Jul 22 2010
a(n) is the number of compositions of n when there are 3 types of 1 and 4 types of other natural numbers. - Milan Janjic, Aug 13 2010
F(3*n+1) = 3^n*a(n;2/3), where a(n;d), n = 0, 1, ..., d, denote the delta-Fibonacci numbers defined in comments to A000045 (see also the papers by Witula et al.). - Roman Witula, Jul 12 2012
We note that the remark above by Paul Barry can be easily obtained from the following scaling identity for delta-Fibonacci numbers y^n a(n;x/y) = Sum_{k=0..n} binomial(n,k) (y-1)^(n-k) a(k;x) and the fact that a(n;2)=5^floor(n/2). Indeed, for x=y=2 we get 2^n a(n;1) = Sum_{k=0..n} binomial(n,k) a(k;2) and, by A000045: Sum_{k=0..n} binomial(n,k) 2^k a(k;1) = Sum_{k=0..n} binomial(n,k) F(k+1) 2^k = 3^n a(n;2/3) = F(3n+1). - Roman Witula, Jul 12 2012
Except for the first term, this sequence can be generated by Corollary 1 (iv) of Azarian's paper in the references for this sequence. - Mohammad K. Azarian, Jul 02 2015
Number of 1’s in the substitution system {0 -> 110, 1 -> 11100} at step n from initial string "1" (1 -> 11100 -> 111001110011100110110 -> ...). - Ilya Gutkovskiy, Apr 10 2017
The o.g.f. of {F(m*n + 1)}A000045%20and%20L%20=%20A000032.%20-%20_Wolfdieter%20Lang">{n>=0}, for m = 1, 2, ..., is G(m,x) = (1 - F(m-1)*x) / (1 - L(m)*x + (-1)^m*x^2), with F = A000045 and L = A000032. - _Wolfdieter Lang, Feb 06 2023

Examples

			a(5) = Fibonacci(3*5 + 1) = Fibonacci(16) = 987. - _Indranil Ghosh_, Feb 04 2017
		

Crossrefs

Cf. A000032, A000045, A104934, A005054, A063727 (inverse binomial transform), A082761 (binomial transform), A001076, A001077.

Programs

Formula

a(n) = A001076(n) + A001077(n) = A001076(n+1) - A001076(n).
a(n) = 2*A049651(n) + 1.
a(n) = 4*a(n-1) + a(n-2) for n>1, a(0)=1, a(1)=3;
G.f.: (1 - x)/(1 - 4*x - x^2).
a(n) = ((1 + sqrt(5))*(2 + sqrt(5))^n - (1 - sqrt(5))*(2 - sqrt(5))^n)/(2*sqrt(5)).
a(n) = Sum_{k=0..n} Sum_{j=0..n-k} C(n,j)*C(n-j,k)*F(n-j+1). - Paul Barry, May 19 2006
First differences of A001076. - Al Hakanson (hawkuu(AT)gmail.com), May 02 2009
a(n) = A167808(3*n+1). - Reinhard Zumkeller, Nov 12 2009
a(n) = Sum_{k=0..n} C(n,k)*F(n+k+1). - Paul Barry, Apr 19 2010
Let p[1]=3, p[i]=4, (i>1), and A be a Hessenberg matrix of order n defined by: A[i,j] = p[j-i+1] (i <= j), A[i,j]=-1 (i = j+1), and A[i,j] = 0 otherwise. Then, for n >= 1, a(n) = det A. - Milan Janjic, Apr 29 2010
a(n) = Sum_{i=0..n} C(n,n-i)*A063727(i). - Seiichi Kirikami, Mar 06 2012
a(n) = Sum_{k=0..n} A122070(n,k) = Sum_{k=0..n} A185384(n,k). - Philippe Deléham, Mar 13 2012
a(n) = A000045(A016777(n)). - Michel Marcus, Dec 10 2015
a(n) = F(2*n)*L(n+1) + F(n-1)*(-1)^n for n > 0. - J. M. Bergot, Feb 09 2016
a(n) = Sum_{k=0..n} binomial(n,k)*5^floor(k/2)*2^(n-k). - Tony Foster III, Sep 03 2017
2*a(n) = Fibonacci(3*n) + Lucas(3*n). - Bruno Berselli, Oct 13 2017
a(n)^2 is the denominator of continued fraction [4,...,4, 2, 4,...,4], which has n 4's before, and n 4's after, the middle 2. - Greg Dresden and Hexuan Wang, Aug 30 2021
a(n) = i^n*(S(n, -4*i) + i*S(n-1, -4*i)), with i = sqrt(-1), and the Chebyshev S-polynomials (see A049310) with S(n, -1) = 0. From the simplified trisection formula. See the first entry above with A001076. - Gary Detlefs and Wolfdieter Lang, Mar 06 2023
E.g.f.: exp(2*x)*(5*cosh(sqrt(5)*x) + sqrt(5)*sinh(sqrt(5)*x))/5. - Stefano Spezia, May 24 2024

A023039 a(n) = 18*a(n-1) - a(n-2).

Original entry on oeis.org

1, 9, 161, 2889, 51841, 930249, 16692641, 299537289, 5374978561, 96450076809, 1730726404001, 31056625195209, 557288527109761, 10000136862780489, 179445175002939041, 3220013013190122249, 57780789062419261441
Offset: 0

Views

Author

Keywords

Comments

The primitive Heronian triangle 3*a(n) +- 2, 4*a(n) has the latter side cut into 2*a(n) +- 3 by the corresponding altitude and has area 10*a(n)*A060645(n). - Lekraj Beedassy, Jun 25 2002
Chebyshev polynomials T(n,x) evaluated at x=9.
{a(n)} gives all (unsigned, integer) solutions of Pell equation a(n)^2 - 80*b(n)^2 = +1 with b(n) = A049660(n), n >= 0.
{a(n)} gives all possible solutions for x in Pell equation x^2 - D*y^2 = 1 for D=5, D=20 and D=80. The corresponding values for y are A060645 (D=5), A207832 (D=20) and A049660 (D=80). - Herbert Kociemba, Jun 05 2022
Also gives solutions to the equation x^2 - 1 = floor(x*r*floor(x/r)) where r=sqrt(5). - Benoit Cloitre, Feb 14 2004
Appears to give all solutions > 1 to the equation: x^2 = ceiling(x*r*floor(x/r)) where r=sqrt(5). - Benoit Cloitre, Feb 24 2004
For all terms x of the sequence, 5*x^2 - 5 is a square, A004292(n)^2.
The a(n) are the x-values in the nonnegative integer solutions of x^2 - 5y^2 = 1, see A060645(n) for the corresponding y-values. - Sture Sjöstedt, Nov 29 2011
Rightmost digits alternate repeatedly: 1 and 9 in fact, a(2) = 18*9 - 1 == 1 (mod 10); a(3) = 18*1 - 9 == 9 (mod 10) therefore a(2n) == 1 (mod 10), a(2n+1) == 9 (mod 10). - Carmine Suriano, Oct 03 2013

Examples

			G.f. = 1 + 9*x + 161*x^2 + 2889*x^3 + 51841*x4 + 930249*x^5 + 16692641*x^6 + ...
		

Crossrefs

Row 2 of array A188645.
Row 4 of A322790.

Programs

  • Magma
    I:=[1, 9]; [n le 2 select I[n] else 18*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 13 2012
    
  • Maple
    a := n -> hypergeom([n, -n], [1/2], -4):
    seq(simplify(a(n)), n=0..16); # Peter Luschny, Jul 26 2020
  • Mathematica
    LinearRecurrence[{18, -1}, {1, 9}, 50] (* Sture Sjöstedt, Nov 29 2011 *)
    CoefficientList[Series[(1-9*x)/(1-18*x+x^2), {x, 0, 50}], x] (* G. C. Greubel, Dec 19 2017 *)
  • PARI
    {a(n) = fibonacci(6*n) / 2 + fibonacci(6*n - 1)}; /* Michael Somos, Aug 11 2009 */
    
  • PARI
    x='x+O('x^30); Vec((1-9*x)/(1-18*x+x^2)) \\ G. C. Greubel, Dec 19 2017

Formula

a(n) ~ (1/2)*(sqrt(5) + 2)^(2*n). - Joe Keane (jgk(AT)jgk.org), May 15 2002
Limit_{n->infinity} a(n)/a(n-1) = phi^6 = 9 + 4*sqrt(5). - Gregory V. Richardson, Oct 13 2002
a(n) = T(n, 9) = (S(n, 18) - S(n-2, 18))/2, with S(n, x) := U(n, x/2) and T(n, x), resp. U(n, x), are Chebyshev's polynomials of the first, resp. second, kind. See A053120 and A049310. S(-2, x) := -1, S(-1, x) := 0, S(n, 18)=A049660(n+1).
a(n) = sqrt(80*A049660(n)^2 + 1) (cf. Richardson comment).
a(n) = ((9 + 4*sqrt(5))^n + (9 - 4*sqrt(5))^n)/2.
G.f.: (1 - 9*x)/(1 - 18*x + x^2).
a(n) = cosh(2*n*arcsinh(2)). - Herbert Kociemba, Apr 24 2008
a(n) = A001077(2*n). - Michael Somos, Aug 11 2009
From Johannes W. Meijer, Jul 01 2010: (Start)
a(n) = 2*A167808(6*n+1) - A167808(6*n+3).
Limit_{k->infinity} a(n+k)/a(k) = a(n) + A060645(n)*sqrt(5).
Limit_{n->infinity} a(n)/A060645(n) = sqrt(5).
(End)
a(n) = (1/2)*A087215(n) = (1/2)*(sqrt(5) + 2)^(2*n) + (1/2)*(sqrt(5) - 2)^(2*n).
Sum_{n >= 1} 1/( a(n) - 5/a(n) ) = 1/8. Compare with A005248, A002878 and A075796. - Peter Bala, Nov 29 2013
a(n) = 2*A115032(n-1) - 1 = S(n, 18) - 9*S(n-1, 18), with A115032(-1) = 1, and see the above formula with S(n, 18) using its recurrence. - Wolfdieter Lang, Aug 22 2014
a(n) = A128052(3n). - A.H.M. Smeets, Oct 02 2017
a(n) = A049660(n+1) - 9*A049660(n). - R. J. Mathar, May 24 2018
a(n) = hypergeom([n, -n], [1/2], -4). - Peter Luschny, Jul 26 2020
a(n) = L(6*n)/2 for L(n) the Lucas sequence A000032(n). - Greg Dresden, Dec 07 2021
a(n) = cosh(6*n*arccsch(2)). - Peter Luschny, May 25 2022

Extensions

Chebyshev and Pell comments from Wolfdieter Lang, Nov 08 2002
Sture Sjöstedt's comment corrected and reformulated by Wolfdieter Lang, Aug 24 2014

A130196 Period 3: repeat [1, 2, 2].

Original entry on oeis.org

1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2
Offset: 0

Views

Author

Paul Curtz, Aug 05 2007

Keywords

Comments

From Reinhard Zumkeller, Nov 12 2009: (Start)
Denominator of x(n) = x(n-1) + x(n-2), x(0)=0, x(1)=1/2; numerator = A167808;
a(n) = A131534(n) + A022003(n) = A080425(n) - A131534(n) + 2 = A153727(n)/A131534(n). (End)
Continued fraction expansion of (5+sqrt(85))/10. - Klaus Brockhaus, May 07 2010

Crossrefs

Cf. A177347 (decimal expansion of (5+sqrt(85))/10).

Programs

Formula

a(n+3) = a(n) with a(0)=1, a(1)=a(2)=2.
G.f.: (1+2*x+2*x^2)/(1-x)*(x^2+x+1). - R. J. Mathar, Nov 14 2007
a(n) = (5 - 2*cos(2*Pi*n/3))/3. - Jaume Oliver Lafont, Nov 23 2008
a(n) = 2 - 0^(n mod 3). - Reinhard Zumkeller, Nov 12 2009
a(n) = A011655(n) + 1 = (n^2 mod 3) + 1. - Boris Putievskiy, Feb 03 2013
a(n) = floor((n+1)*5/3) - floor(n*5/3). - Hailey R. Olafson, Jul 23 2014
E.g.f.: (5*exp(x) - 2*exp(-x/2)*cos(sqrt(3)*x/2))/3. - Stefano Spezia, Jun 03 2021

Extensions

More terms from Klaus Brockhaus, May 07 2010

A131534 Period 3: repeat [1, 2, 1].

Original entry on oeis.org

1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1
Offset: 0

Views

Author

Paul Curtz, Aug 26 2007

Keywords

Comments

Partial sums of A106510. Inverse binomial transform of A024495 (without leading zeros). - Philippe Deléham, Nov 26 2008
a(n) = A130196(n) - A022003(n) = A080425(n) - A130196(n)+2 = A153727(n)/A130196(n). - Reinhard Zumkeller, Nov 12 2009
Continued fraction expansion of A177346, (1+sqrt(10))/3. - Klaus Brockhaus, May 07 2010
From Daniel Forgues, May 04 2016: (Start)
a(n) = GCD of terms of the sequence S_n = {F_i+F_{i+1}+F_{i+2}+...+F_{i+2n}, i >= 0}, where F_i denotes a Fibonacci number. See A210209.
a(n) = GCD of terms of the sequence S_n = {L_i+L_{i+1}+L_{i+2}+...+L_{i+2n}, i >= 0}, where L_i denotes a Lucas number. See A229339. (End)

Crossrefs

Programs

Formula

G.f.: (x+1)^2/((1-x)*(x^2+x+1)). - R. J. Mathar, Nov 14 2007
a(n) = 4/3 + (2/3)*cos(2*Pi*(n+2)/3). - Jaume Oliver Lafont, May 09 2008
a(n) = A101825(n+1). - R. J. Mathar, Jun 13 2008
a(n) = gcd(F(n)^2+F(n+1)^2, F(n)+F(n+1)). - Gary Detlefs, Dec 29 2010
a(n) = 2 - ((n+2)^2 mod 3). - Gary Detlefs, Oct 13 2011
a(n) = ceiling(n*4/3) - ceiling((n-1)*4/3). - Tom Edgar, Jul 22 2014
a(n) = 2 - abs(3*floor(n/3)+1-n). - Mikael Aaltonen, Jan 02 2015
a(n) = 1+[3|(2n+1)], using Iverson bracket. - Daniel Forgues, May 04 2016
a(n) = a(n-3) for n>2. - Wesley Ivan Hurt, Jul 05 2016
E.g.f.: (4*exp(x) - exp(-x/2)*(cos(sqrt(3)*x/2) - sqrt(3)*sin(sqrt(3)*x/2)))/3. - Stefano Spezia, Aug 04 2025

A075796 Numbers k such that 5*k^2 + 5 is a square.

Original entry on oeis.org

2, 38, 682, 12238, 219602, 3940598, 70711162, 1268860318, 22768774562, 408569081798, 7331474697802, 131557975478638, 2360712083917682, 42361259535039638, 760141959546795802, 13640194012307284798, 244763350261984330562, 4392100110703410665318, 78813038642399407645162
Offset: 1

Views

Author

Gregory V. Richardson, Oct 13 2002

Keywords

Comments

Bisection of A001077; a(n) = A001077(2*n-1). - Greg Dresden, Jun 08 2021
From Peter Bala, Aug 25 2022: (Start)
The aerated sequence (b(n))n>=1 = [2, 0, 38, 0, 682, 0, 1238, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). The sequence (1/2)*(b(n))n>=1 is the case P1 = 0, P2 = -16, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047. (End)

References

  • A. H. Beiler, "The Pellian." Ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.
  • L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.
  • Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.

Crossrefs

Programs

  • Magma
    I:=[2,38]; [n le 2 select I[n] else 18*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 30 2011
    
  • Magma
    [Lucas(6*n-3)/2: n in [1..20]]; // G. C. Greubel, Feb 13 2019
    
  • Maple
    with(combinat); A075796:=n->fibonacci(6*n+3)+fibonacci(6*n)/2; seq(A075796(n), n=1..50); # Wesley Ivan Hurt, Nov 29 2013
  • Mathematica
    LinearRecurrence[{18, -1}, {2, 38}, 50] (* Sture Sjöstedt, Nov 29 2011; typo fixed by Vincenzo Librandi, Nov 30 2011 *)
    LucasL[6*Range[20]-3]/2 (* G. C. Greubel, Feb 13 2019 *)
    CoefficientList[Series[2*(1+x)/( 1-18*x+x^2 ), {x,0,20}],x] (* Stefano Spezia, Mar 02 2019 *)
  • PARI
    vector(20, n, (fibonacci(6*n-2) + fibonacci(6*n-4))/2) \\ G. C. Greubel, Feb 13 2019
    
  • Sage
    [(fibonacci(6*n-2) + fibonacci(6*n-4))/2 for n in (1..20)] # G. C. Greubel, Feb 13 2019

Formula

a(n) = (((9 + 4*sqrt(5))^n - (9 - 4*sqrt(5))^n) + ((9 + 4*sqrt(5))^(n-1) - (9 - 4*sqrt(5))^(n-1)))/(4*sqrt(5)).
a(n) = 18*a(n-1) - a(n-2).
a(n) = 2*A049629(n-1).
Limit_{n->oo} a(n)/a(n-1) = 8*phi + 1 = 9 + 4*sqrt(5).
a(n+1) = 9*a(n) + 4*sqrt(5)*sqrt((a(n)^2+1)). - Richard Choulet, Aug 30 2007
G.f.: 2*x*(1 + x)/(1 - 18*x + x^2). - Richard Choulet, Oct 09 2007
From Johannes W. Meijer, Jul 01 2010: (Start)
a(n) = A000045(6*n+3) + A000045(6*n)/2.
a(n) = 2*A167808(6*n+4) - A167808(6*n+6).
Limit_{k->oo} a(n+k)/a(k) = A023039(n)*A060645(n)*sqrt(5).
(End)
5*A007805(n)^2 - 1 = a(n+1)^2. - Sture Sjöstedt, Nov 29 2011
From Peter Bala, Nov 29 2013: (Start)
a(n) = Lucas(6*n - 3)/2.
Sum_{n >= 1} 1/(a(n) + 5/a(n)) = 1/4. Compare with A002878, A005248, A023039. (End)
Limit_{n->oo} a(n)/A007805(n-1) = sqrt(5). - A.H.M. Smeets, May 29 2017
E.g.f.: (exp((9 - 4*sqrt(5))*x)*(- 5 + 2*sqrt(5) + (5 + 2*sqrt(5))*exp(8*sqrt(5)*x)))/(2*sqrt(5)). - Stefano Spezia, Feb 13 2019
Sum_{n > 0} 1/a(n) = (1/log(9 - 4*sqrt(5)))*(- 17 - 38/sqrt(5))*sqrt(5*(9 - 4*sqrt(5)))*(- 9 + 4*sqrt(5))*(psi_{9 - 4*sqrt(5)}(1/2) - psi_{9 - 4*sqrt(5)}(1/2 - (I*Pi)/log(9 - 4*sqrt(5)))) approximately equal to 0.527868600269500798938265500122302016..., where psi_q(x) is the q-digamma function. - Stefano Spezia, Feb 25 2019
a(n) = sinh((6*n - 3)*arccsch(2)). - Peter Luschny, May 25 2022

A167816 Numerator of x(n) = x(n-1) + x(n-2), x(0)=0, x(1)=1/3; denominator=A167817.

Original entry on oeis.org

0, 1, 1, 2, 1, 5, 8, 13, 7, 34, 55, 89, 48, 233, 377, 610, 329, 1597, 2584, 4181, 2255, 10946, 17711, 28657, 15456, 75025, 121393, 196418, 105937, 514229, 832040, 1346269, 726103, 3524578, 5702887, 9227465, 4976784, 24157817, 39088169, 63245986, 34111385
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 13 2009

Keywords

Crossrefs

Programs

  • Magma
    [0,1,1] cat [Numerator(Fibonacci(n)/Fibonacci(2*n-4)): n in [3..40]]; // Vincenzo Librandi, Jun 28 2016
  • Mathematica
    Numerator[LinearRecurrence[{1,1},{0,1/3},40]] (* Harvey P. Dale, Dec 07 2014 *)
    LinearRecurrence[{0, 0, 0, 7, 0, 0, 0, -1},{0, 1, 1, 2, 1, 5, 8, 13},39] (* Ray Chandler, Aug 03 2015 *)

Formula

a(n) = (a(n-1)*A093148(n+2) + a(n-2)*A093148(n+1))/A093148(n-1) for n>1.
a(4*n) = A004187(n) = (a(4*n-1) + a(4*n-2))/3;
a(4*n+1) = A033889(n) = 3*a(4*n-1) + a(4*n-2);
a(4*n+2) = A033890(n) = a(4*n-1) + 3*a(4*n-2);
a(4*n+3) = A033891(n) = a(4*n-1) + a(4*n-2).
Numerator of Fibonacci(n) / Fibonacci(2n-4) for n>=3. - Gary Detlefs, Dec 20 2010

Extensions

Definition corrected by D. S. McNeil, May 09 2010

A179131 Numerators of A178381(4*n+1)/A178381(4*n).

Original entry on oeis.org

1, 5, 25, 65, 85, 445, 1165, 1525, 7985, 20905, 27365, 143285, 375125, 491045, 2571145, 6731345, 8811445, 46137325, 120789085, 158114965, 827900705, 2167472185, 2837257925, 14856075365, 38893710245, 50912527685, 266581455865
Offset: 0

Views

Author

Johannes W. Meijer, Jul 01 2010

Keywords

Comments

For the denominators see A179132.

Crossrefs

Programs

  • Maple
    with(GraphTheory): nmax:=116; P:=9: G:=PathGraph(P): A:= AdjacencyMatrix(G): for n from 0 to nmax do B(n):=A^n; A178381(n):=add(B(n)[1,k],k=1..P); od: for n from 0 to nmax-1 do a(n):= numer(A178381(4*n+1)/A178381(4*n)) od: seq(a(n),n=0..nmax/4-1);

Formula

a(n) = 5*A167808(2*n+1) for n>=1.
Limit(A179131(n)/A179132(n), n =infinity) = 1+cos(Pi/5) = A296182.
a(n) = 18*a(n-3)-a(n-6) for n>6. G.f.: -(4*x^6+5*x^5+5*x^4-47*x^3-25*x^2-5*x-1) / ((x^2-3*x+1)*(x^4+3*x^3+8*x^2+3*x+1)). - Colin Barker, Jun 27 2013

A179135 a(n) = (3-sqrt(5))*((3+sqrt(5))/10)^(-n)/2+(3+sqrt(5))*((3-sqrt(5))/10)^(-n)/2.

Original entry on oeis.org

3, 35, 450, 5875, 76875, 1006250, 13171875, 172421875, 2257031250, 29544921875, 386748046875, 5062597656250, 66270263671875, 867489013671875, 11355578613281250, 148646453857421875, 1945807342529296875
Offset: 0

Views

Author

Johannes W. Meijer, Jul 01 2010

Keywords

Crossrefs

Cf. A109106.

Programs

  • Maple
    with(GraphTheory): nmax:=72; P:=9: G:=PathGraph(P): A:= AdjacencyMatrix(G): for n from 0 to nmax do B(n):=A^n; A178381(n):=add(B(n)[1,k],k=1..P); od: for n from 0 to nmax/4-1 do a(n):= A178381(4*n+3) od: seq(a(n),n=0..nmax/4-1);

Formula

a(n) = A178381(4*n+3).
G.f.: (3-10*z)/(1-15*z+25*z^2).
Limit(a(n+k)/a(k), k=infinity) = A000351(n)*A130196(n)/(A128052(n) - A167808(2*n)*sqrt(5)).
Limit(A128052(n)/A167808(2*n),n=infinity) = sqrt(5).
a(n) = 5^n*Lucas(2*(n+1)). - Ehren Metcalfe, Apr 22 2018
Showing 1-10 of 10 results.