A344684 Sum of two consecutive products of Fibonacci and Pell numbers: F(n)*P(n) + F(n+1)*P(n+1).
1, 3, 12, 46, 181, 705, 2757, 10765, 42058, 164280, 641739, 2506789, 9792253, 38251227, 149420064, 583676434, 2280003517, 8906330973, 34790619369, 135901886149, 530870766310
Offset: 0
Examples
For n=3, a(3)=46 which is F(3)*P(3) + F(4)*P(4) = 2*5 + 3*12 = 46. Also, the continued fraction [1,1,1,2,2,2] with 3 1's followed by 3 2's has numerator 46.
Links
- Index entries for linear recurrences with constant coefficients, signature (2,7,2,-1).
Programs
-
Mathematica
Table[Fibonacci[n] Fibonacci[n, 2] + Fibonacci[n + 1] Fibonacci[n + 1, 2], {n, 0, 30}]
-
PARI
P(n) = ([2, 1; 1, 0]^n)[2, 1]; \\ A000129 a(n) = fibonacci(n)*P(n)+ fibonacci(n+1)*P(n+1); \\ Michel Marcus, Aug 18 2021
Comments