A007805
a(n) = Fibonacci(6*n + 3)/2.
Original entry on oeis.org
1, 17, 305, 5473, 98209, 1762289, 31622993, 567451585, 10182505537, 182717648081, 3278735159921, 58834515230497, 1055742538989025, 18944531186571953, 339945818819306129, 6100080207560938369
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..795 (terms 0..100 from T. D. Noe)
- A. J. C. Cunningham, Binomial Factorisations, Vols. 1-9, Hodgson, London, 1923-1929. See Vol. 1, page xxxv.
- Tanya Khovanova, Recursive Sequences
- Giovanni Lucca, Integer Sequences and Circle Chains Inside a Hyperbola, Forum Geometricorum (2019) Vol. 19, 11-16.
- H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
- H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume
- Index entries for linear recurrences with constant coefficients, signature (18,-1).
- Index entries for sequences related to Chebyshev polynomials.
Cf. similar sequences listed in
A238379.
-
a007805 = (`div` 2) . a000045 . (* 3) . (+ 1) . (* 2)
-- Reinhard Zumkeller, Mar 26 2013
-
I:=[1, 17]; [n le 2 select I[n] else 18*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 19 2017
-
seq(combinat:-fibonacci(6*n+3)/2, n=0..30); # Robert Israel, Sep 10 2014
-
LinearRecurrence[{18, -1}, {1, 17}, 50] (* Sture Sjöstedt, Nov 29 2011 *)
Table[Fibonacci[6n+3]/2, {n, 0, 20}] (* Harvey P. Dale, Dec 17 2011 *)
CoefficientList[Series[(1-x)/(1-18*x+x^2), {x, 0, 50}], x] (* G. C. Greubel, Dec 19 2017 *)
-
a(n)=fibonacci(6*n+3)/2 \\ Edward Jiang, Sep 09 2014
-
x='x+O('x^30); Vec((1-x)/(1-18*x+x^2)) \\ G. C. Greubel, Dec 19 2017
A134492
a(n) = Fibonacci(6*n).
Original entry on oeis.org
0, 8, 144, 2584, 46368, 832040, 14930352, 267914296, 4807526976, 86267571272, 1548008755920, 27777890035288, 498454011879264, 8944394323791464, 160500643816367088, 2880067194370816120, 51680708854858323072, 927372692193078999176, 16641027750620563662096
Offset: 0
Cf.
A000032,
A000045,
A008588,
A049660,
A079343,
A014445,
A014448,
A134493,
A134494,
A134495,
A103134,
A134497,
A134498.
-
[Fibonacci(6*n): n in [0..100]]; // Vincenzo Librandi, Apr 17 2011
-
Table[Fibonacci[6n], {n, 0, 30}]
LinearRecurrence[{18,-1},{0,8},30] (* Harvey P. Dale, Aug 15 2017 *)
-
numlib::fibonacci(6*n) $ n = 0..25; // Zerinvary Lajos, May 09 2008
-
a(n)=fibonacci(6*n) \\ Charles R Greathouse IV, Sep 16 2015
-
concat(0, Vec(8*x/(1-18*x+x^2) + O(x^20))) \\ Colin Barker, Jan 24 2016
-
[fibonacci(6*n) for n in range(0, 17)] # Zerinvary Lajos, May 15 2009
A103134
a(n) = Fibonacci(6n+4).
Original entry on oeis.org
3, 55, 987, 17711, 317811, 5702887, 102334155, 1836311903, 32951280099, 591286729879, 10610209857723, 190392490709135, 3416454622906707, 61305790721611591, 1100087778366101931, 19740274219868223167, 354224848179261915075, 6356306993006846248183
Offset: 0
Cf.
A000032,
A000045,
A001906,
A001519,
A015448,
A014445,
A033888,
A033889,
A033890,
A033891,
A049310,
A049660,
A102312,
A099100,
A134490,
A134491,
A134492,
A134493,
A134494,
A134495,
A103134,
A134497,
A134498,
A134499,
A134500,
A134501,
A134502,
A134503,
A134504.
-
[Fibonacci(6*n +4): n in [0..100]]; // Vincenzo Librandi, Apr 17 2011
-
Table[Fibonacci[6n+4], {n, 0, 30}]
LinearRecurrence[{18,-1},{3,55},20] (* Harvey P. Dale, Mar 29 2023 *)
Table[ChebyshevU[3*n+1, 3/2], {n, 0, 20}] (* Vaclav Kotesovec, May 27 2023 *)
-
a(n)=fibonacci(6*n+4) \\ Charles R Greathouse IV, Feb 05 2013
A134497
a(n) = Fibonacci(6n+5).
Original entry on oeis.org
5, 89, 1597, 28657, 514229, 9227465, 165580141, 2971215073, 53316291173, 956722026041, 17167680177565, 308061521170129, 5527939700884757, 99194853094755497, 1779979416004714189, 31940434634990099905, 573147844013817084101, 10284720757613717413913
Offset: 0
-
[Fibonacci(6*n +5): n in [0..100]]; // Vincenzo Librandi, Apr 17 2011
-
Table[Fibonacci[6n+5], {n, 0, 30}]
Take[Fibonacci[Range[100]],{5,-1,6}] (* Harvey P. Dale, Jun 18 2013 *)
-
a(n)=fibonacci(6*n+5) \\ Charles R Greathouse IV, Jun 11 2015
-
Vec((5-x)/(1-18*x+x^2) + O(x^100)) \\ Altug Alkan, Jan 24 2016
A134493
a(n) = Fibonacci(6*n+1).
Original entry on oeis.org
1, 13, 233, 4181, 75025, 1346269, 24157817, 433494437, 7778742049, 139583862445, 2504730781961, 44945570212853, 806515533049393, 14472334024676221, 259695496911122585, 4660046610375530309, 83621143489848422977, 1500520536206896083277, 26925748508234281076009
Offset: 0
A134504
a(n) = Fibonacci(7n + 6).
Original entry on oeis.org
8, 233, 6765, 196418, 5702887, 165580141, 4807526976, 139583862445, 4052739537881, 117669030460994, 3416454622906707, 99194853094755497, 2880067194370816120, 83621143489848422977, 2427893228399975082453
Offset: 0
Cf.
A000045,
A001906,
A001519,
A033887,
A015448,
A014445,
A033888,
A033889,
A033890,
A033891,
A102312,
A099100,
A134490,
A134491,
A134492,
A134493,
A134494,
A134495,
A103134,
A134497,
A134498,
A134499,
A134500,
A134501,
A134502,
A134503,
A134504.
-
[Fibonacci(7*n +6): n in [0..100]]; // Vincenzo Librandi, Apr 17 2011
-
Table[Fibonacci[7n+6], {n, 0, 30}]
LinearRecurrence[{29,1},{8,233},20] (* Harvey P. Dale, Jul 21 2021 *)
-
a(n)=fibonacci(7*n+6) \\ Charles R Greathouse IV, Jun 11 2015
A134501
a(n) = Fibonacci(7n + 3).
Original entry on oeis.org
2, 55, 1597, 46368, 1346269, 39088169, 1134903170, 32951280099, 956722026041, 27777890035288, 806515533049393, 23416728348467685, 679891637638612258, 19740274219868223167, 573147844013817084101, 16641027750620563662096
Offset: 0
Cf.
A000045,
A001906,
A001519,
A033887,
A015448,
A014445,
A033888,
A033889,
A033890,
A033891,
A102312,
A099100,
A134490-
A134495,
A103134,
A134497 -
A134504.
A134502
a(n) = Fibonacci(7n + 4).
Original entry on oeis.org
3, 89, 2584, 75025, 2178309, 63245986, 1836311903, 53316291173, 1548008755920, 44945570212853, 1304969544928657, 37889062373143906, 1100087778366101931, 31940434634990099905, 927372692193078999176, 26925748508234281076009
Offset: 0
Cf.
A000045,
A001906,
A001519,
A033887,
A015448,
A014445,
A033888,
A033889,
A033890,
A033891,
A102312,
A099100,
A134490-
A134495,
A103134,
A134497-
A134504.
A134489
a(n) = Fibonacci(5*n + 2).
Original entry on oeis.org
1, 13, 144, 1597, 17711, 196418, 2178309, 24157817, 267914296, 2971215073, 32951280099, 365435296162, 4052739537881, 44945570212853, 498454011879264, 5527939700884757, 61305790721611591, 679891637638612258
Offset: 0
Cf.
A000045,
A001906,
A001519,
A033887,
A015448,
A014445,
A033888-
A033891,
A102312,
A099100,
A134490-
A134495,
A103134,
A134497-
A134504.
-
[Fibonacci(5*n+2): n in [0..50]]; // Vincenzo Librandi, Apr 20 2011
-
Table[Fibonacci[5n + 2], {n, 0, 30}]
LinearRecurrence[{11,1},{1,13},20] (* Harvey P. Dale, May 05 2022 *)
A305315
a(n) = sqrt(5*b(n)^2 - 4), with b(n) = A134493(n) = Fibonacci(6*n+1), n >= 0.
Original entry on oeis.org
1, 29, 521, 9349, 167761, 3010349, 54018521, 969323029, 17393796001, 312119004989, 5600748293801, 100501350283429, 1803423556807921, 32361122672259149, 580696784543856761, 10420180999117162549, 186982561199565069121, 3355265920593054081629, 60207804009475408400201, 1080385206249964297121989
Offset: 0
The solutions of the first class of positive proper solutions [a1(n), b1(n)] of the Pell equation a^2 - 5*b^2 = -4 begin: [1, 1], [29, 13], [521, 233], [9349, 4181], [167761, 75025], [3010349, 1346269], [54018521, 24157817], ...
The solutions of the second class of positive proper solutions [a5(n), b5(n)] begin: [11, 5], [199, 89], [3571, 1597], [64079, 28657], [1149851, 514229], [20633239, 9227465], [370248451, 165580141], ...
The solutions of the class of improper positive solutions [a3(n), b3(n)] begin: [4, 2], [76, 34], [1364, 610], [24476, 10946], [439204, 196418], [7881196, 3524578], [141422324, 63245986], ...
- Aigner, Martin. Markov's theorem and 100 years of the uniqueness conjecture. A mathematical journey from irrational numbers to perfect matchings. Springer, 2013.
-
Select[LinearRecurrence[{1, 1}, {1, 3}, 115], Mod[#, 4] == 1 &] (* Fred Patrick Doty, Aug 03 2020 *)
-
my(x='x+O('x^20)); Vec((1+11*x)/(1-18*x+x^2)) \\ Altug Alkan, Jul 11 2018
Showing 1-10 of 11 results.
Comments