cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A081068 a(n) = (Lucas(4*n+2) + 2)/5, or Fibonacci(2*n+1)^2, or A081067(n)/5.

Original entry on oeis.org

1, 4, 25, 169, 1156, 7921, 54289, 372100, 2550409, 17480761, 119814916, 821223649, 5628750625, 38580030724, 264431464441, 1812440220361, 12422650078084, 85146110326225, 583600122205489, 4000054745112196, 27416783093579881
Offset: 0

Views

Author

R. K. Guy, Mar 04 2003

Keywords

Comments

Indices of 12-gonal numbers which are also squares (A342709). - Bernard Schott, Mar 19 2021
Values of y in solutions of x^2 = 5*y^2 - 4*y in positive integers. See A360467 for how this relates to a problem regarding the subdivision of a square into four triangles of integer area. - Alexander M. Domashenko, Feb 26 2023
And the corresponding x values of x^2 = 5*y^2 - 4*y are in A033890. - Bernard Schott, Feb 26 2023

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 19.
  • Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75.

Crossrefs

Cf. A000045 (Fibonacci numbers), A000032 (Lucas numbers), A081067.

Programs

  • Magma
    I:=[1, 4, 25]; [n le 3 select I[n] else 8*Self(n-1)-8*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 26 2012
    
  • Magma
    [(Lucas(4*n+2) + 2)/5: n in [0..30]]; // G. C. Greubel, Dec 17 2017
    
  • Maple
    luc := proc(n) option remember: if n=0 then RETURN(2) fi: if n=1 then RETURN(1) fi: luc(n-1)+luc(n-2): end: for n from 0 to 40 do printf(`%d,`,(luc(4*n+2)+2)/5) od: # James Sellers, Mar 05 2003
  • Mathematica
    CoefficientList[Series[-(1-4*x+x^2)/((x-1)*(x^2-7*x+1)),{x,0,40}],x] (* or *) LinearRecurrence[{8,-8,1},{1,4,25},50] (* Vincenzo Librandi, Jun 26 2012 *)
    Table[(LucasL[4*n+2] + 2)/5, {n,0,30}] (* G. C. Greubel, Dec 17 2017 *)
  • PARI
    main(size)={ return(concat([1],vector(size,n,fibonacci(2*n+1)^2))) } /* Anders Hellström, Jul 11 2015 */
    
  • PARI
    for(n=0,30, print1(fibonacci(2*n+1)^2, ", ")) \\ G. C. Greubel, Dec 17 2017

Formula

a(n) = A001519(n+1)^2 = A122367(n)^2 = A058038(n) + 1.
a(n) = A103433(n+1) - A103433(n).
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
a(n) = Fibonacci(2*n)*Fibonacci(2*n+2) +1. - Gary Detlefs, Apr 01 2012
G.f.: (1-4*x+x^2)/((1-x)*(x^2-7*x+1)). - Colin Barker, Jun 26 2012
Sum_{n>=0} 1/(a(n) + 1) = 1/3*sqrt(5). - Peter Bala, Nov 30 2013
Sum_{n>=0} 1/a(n) = sqrt(5) * Sum_{n>=1} (-1)^(n+1)*n/Fibonacci(2*n) (Jennings, 1994). - Amiram Eldar, Oct 30 2020
Product_{n>=1} (1 + 1/a(n)) = phi^2/2 (A239798), where phi is the golden ratio (A001622) (Davlianidze, 2020). - Amiram Eldar, Dec 01 2021

Extensions

More terms from James Sellers, Mar 05 2003

A077916 Expansion of (1-x)^(-1)/(1 + 2*x - 2*x^2 - x^3).

Original entry on oeis.org

1, -1, 5, -10, 30, -74, 199, -515, 1355, -3540, 9276, -24276, 63565, -166405, 435665, -1140574, 2986074, -7817630, 20466835, -53582855, 140281751, -367262376, 961505400, -2517253800, 6590256025, -17253514249, 45170286749, -118257345970, 309601751190, -810547907570
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Crossrefs

Cf. A002571.
Bisections are A103433 and A103434.

Programs

  • Mathematica
    a[0] = 1; a[1] = -1; a[2] = 5; a[3] = -10; a[n_] := a[n] = -a[n-1] + 4 a[n-2] - a[n-3] - a[n-4]; Table[a[n], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 28 2015 *)
    CoefficientList[Series[(1 - x)^(-1)/(1 + 2*x - 2*x^2 - x^3), {x, 0, 50}], x] (* G. C. Greubel, Dec 25 2017 *)
    Table[If[OddQ[n], (Fibonacci[2n+2]+n+1)/5, -(Fibonacci[2n+2]-n-1)/5], {n,1,20}] (* Rigoberto Florez, May 09 2019 *)
  • PARI
    Vec((1-x)^(-1)/(1+2*x-2*x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
    
  • PARI
    Vec(1/((1-x)^2*(1+3*x+x^2)) + O(x^100)) \\ Altug Alkan, Oct 28 2015

Formula

a(n-1) = Sum_{i=1..n} (-1)^(i+1)*Fibonacci(i)*Fibonacci(i+1), n >= 1. - Alexander Adamchuk, Jun 16 2006
From R. J. Mathar, Mar 14 2011: (Start)
G.f.: 1/((1-x)^2*(1+3*x+x^2)).
a(n) = ((-1)^n*A001906(n+2)+n+2)/5. (End)
O.g.f.: exp( Sum_{n >= 1} Lucas(n)^2*(-x)^n/n ) = 1 - x + 5*x^2 - 10*x^3 + .... Cf. A203803. See also A207969 and A207970. - Peter Bala, Apr 03 2014
From Vladimir Reshetnikov, Oct 28 2015: (Start)
Recurrence (5-term): a(0) = 1, a(1) = -1, a(2) = 5, a(3) = -10, a(n) = -a(n-1) + 4*a(n-2) - a(n-3) - a(n-4).
Recurrence (4-term): a(0) = 1, a(1) = -1, a(2) = 5, n*a(n) = (1-2*n)*a(n-1) + (3*n+3)*a(n-2) + (n+1)*a(n-3).
(End)
a(n) = (F(2n+2)+n+1)/5 if n is odd and a(n)= -(F(2n+2)-n-1)/5 if n is even, where F(n) = Fibonacci numbers (A000045). - Rigoberto Florez, May 09 2019

A156088 Alternating sum of the squares of the first n even-indexed Fibonacci numbers.

Original entry on oeis.org

0, -1, 8, -56, 385, -2640, 18096, -124033, 850136, -5826920, 39938305, -273741216, 1876250208, -12860010241, 88143821480, -604146740120, 4140883359361, -28382036775408, 194533374068496, -1333351581704065, 9138927697859960
Offset: 0

Views

Author

Stuart Clary, Feb 04 2009

Keywords

Comments

Apart from signs, same as A092521.
Natural bilateral extension (brackets mark index 0): ..., 2640, -385, 56, -8, 1, 0, [0], -1, 8, -56, 385, -2640, 18096, ... This is (-a(n))-reversed followed by a(n). That is, a(-n) = -a(n-1).

Crossrefs

Programs

  • Magma
    A156088:= func< n | (-1)^n*(Lucas(4*n+2)-3)/15 >; // G. C. Greubel, Jun 12 2025
    
  • Mathematica
    a[n_]:= If[n >= 0, Sum[(-1)^k Fibonacci[2k]^2, {k,n}], Sum[ -(-1)^k Fibonacci[-2k]^2, {k,-n-1}]];
    LinearRecurrence[{-8,-8,-1}, {0,-1,8}, 41] (* G. C. Greubel, Jun 12 2025 *)
  • SageMath
    def A156088(n): return (-1)^n*(lucas_number2(4*n+2,1,-1) -3)//15 # G. C. Greubel, Jun 12 2025

Formula

Let F(n) be the n-th Fibonacci number, A000045(n), and L(n) be the n-th Lucas number, A000032(n), then: (Start)
a(n) = Sum_{k=1..n} (-1)^k F(2*k)^2.
Closed form: a(n) = (-1)^n * (L(4*n+2) - 3)/15.
Factored closed form: a(n) = (1/3) * (-1)^n * F(n)*L(n)*F(n+1)*L(n+1) = (1/3)*(-1)^n * F(2*n)*F(2*n+2).
Recurrence: a(n) + 8*a(n-1) + 8*a(n-2) + a(n-3) = 0.
G.f.: -x/(1 + 8*x + 8*x^2 + x^3) = -x/((1 + x)(1 + 7*x + x^2)). (End)
From G. C. Greubel, Jun 12 2025: (Start)
a(n) = (-1)^n*A081079(n)/15.
E.g.f.: (1/15)*( exp(-7*x/2)*( 3*cosh(p*x) - sqrt(5)*sinh(p*x) ) - 3*exp(-x) ), where p = 3*sqrt(5)/2. (End)

A156089 Alternating sum of the squares of the first n odd-indexed Fibonacci numbers.

Original entry on oeis.org

0, -1, 3, -22, 147, -1009, 6912, -47377, 324723, -2225686, 15255075, -104559841, 716663808, -4912086817, 33667943907, -230763520534, 1581676699827, -10840973378257, 74305136947968, -509294985257521, 3490759759854675
Offset: 0

Views

Author

Stuart Clary, Feb 04 2009

Keywords

Comments

Natural bilateral extension (brackets mark index 0): ..., 6912, -1009, 147, -22, 3, -1, [0], -1, 3, -22, 147, -1009, 6912, ... This is a(n)-reversed followed by a(n), without repeating the 0. That is, a(-n) = a(n).

Crossrefs

Programs

  • Magma
    A156089:= func< n | ((-1)^n*(Lucas(4*n)+3) - 5)/15 >; // G. C. Greubel, Jun 12 2025
    
  • Mathematica
    a[n_]:= If[n >= 0, Sum[(-1)^k Fibonacci[2k-1]^2, {k,n} ], -Sum[-(-1)^k Fibonacci[-2k+1]^2, {k,-n}]];
    Join[{0},Accumulate[Times@@@Partition[Riffle[Fibonacci[Range[1,43,2]]^2, {-1,1}],2]]] (* Harvey P. Dale, Aug 18 2011 *)
    LinearRecurrence[{-7,0,7,1}, {0,-1,3,-22}, 41] (* G. C. Greubel, Jun 12 2025 *)
  • SageMath
    def A156089(n): return ((-1)^n*(lucas_number2(4*n,1,-1)+3)-5)//15 # G. C. Greubel, Jun 12 2025

Formula

Let F(n) be the n-th Fibonacci number, A000045(n), and L(n) be the n-th Lucas number, A000032(n).
a(n) = Sum_{k=1..n} (-1)^k F(2*k-1)^2.
Closed form: a(n) = (-1)^n * (L(4*n) + 3)/15 - 1/3.
Factored closed form: a(n) = (1/3)*F(2*n)^2 if n is even.
Not-so-factored closed form: a(n) = -(F(2*n)^2 + 2)/3 if n is odd.
Recurrence: a(n) + 7*a(n-1) - 7*a(n-3) - a(n-4) = 0.
G.f.: -x*(1 + 4*x + x^2)/(1 + 7*x - 7*x^3 - x^4) = -x*(1 + 4*x + x^2)/((1 - x)*(1 + x)*(1 + 7*x + x^2)).
E.g.f.: (2/15)*( exp(-7*x/2)*cosh(3*sqrt(5)*x/2) - cosh(x) - 4*sinh(x) ). - G. C. Greubel, Jun 12 2025

A203170 Sum of the fourth powers of the first n odd-indexed Fibonacci numbers.

Original entry on oeis.org

0, 1, 17, 642, 29203, 1365539, 64107780, 3011403301, 141469813301, 6646055880582, 312223061019703, 14667837157106759, 689076118833981960, 32371909717271872585, 1520790680382055836761, 71444790066793903279242
Offset: 0

Views

Author

Stuart Clary, Dec 30 2011

Keywords

Comments

Natural bilateral extension (brackets mark index 0): ..., -1365539, -29203, -642, -17, -1, [0], 1, 17, 642, 29203, 1365539, ... That is, a(-n) = -a(n).

Crossrefs

Programs

  • Mathematica
    a[n_Integer] := (1/75)(Fibonacci[8n] + 12*Fibonacci[4n] + 18 n); Table[a[n], {n, 0, 20}]

Formula

Let F(n) be the Fibonacci number A000045(n).
a(n) = Sum_{k=1..n} F(2k-1)^4.
Closed form: a(n) = (1/75)(F(8n) + 12 F(4n) + 18 n).
Recurrence: a(n) - 56 a(n-1) + 440 a(n-2) - 770 a(n-3) + 440 a(n-4) - 56 a(n-5) + a(n-6) = 0.
G.f.: A(x) = (x - 39 x^2 + 130 x^3 - 39 x^4 + x^5)/(1 - 56 x + 440 x^2 - 770 x^3 + 440 x^4 - 56 x^5 + x^6) = x(1 - 39 x + 130 x^2 - 39 x^3 + x^4)/((1 - x)^2 (1 - 7 x + x^2)(1 - 47 x + x^2)).

A280470 Triangle A106534 with reversed rows.

Original entry on oeis.org

1, 1, 2, 2, 3, 5, 5, 7, 10, 15, 14, 19, 26, 36, 51, 42, 56, 75, 101, 137, 188, 132, 174, 230, 305, 406, 543, 731, 429, 561, 735, 965, 1270, 1676, 2219, 2950, 1430, 1859, 2420, 3155, 4120, 5390, 7066, 9285, 12235, 4862, 6292, 8151, 10571, 13726, 17846, 23236, 30302, 39587, 51822, 16796, 21658, 27950, 36101, 46672
Offset: 0

Views

Author

Tony Foster III, Jan 03 2017

Keywords

Examples

			Fibonacci Determinant Triangle:
    1;
    1,    2;
    2,    3,    5;
    5,    7,   10,   15;
   14,   19,   26,   36,   51;
   42,   56,   75,  101,  137,  188;
  132,  174,  230,  305,  406,  543,  731;
  429,  561,  735,  965, 1270, 1676, 2219, 2950;
  ...
		

Crossrefs

Programs

  • Magma
    &cat [[&+[Binomial(k,j)*Catalan(n-j): j in [0..k]]: k in [0..n]]: n in [0..10]]; // Bruno Berselli, Mar 07 2017
  • Mathematica
    Table[Sum[Binomial[k, j] CatalanNumber[n - j], {j, 0, k}], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Mar 08 2017 *)
  • PARI
    C(n)=binomial(2*n,n)/(n+1);
    T(n,k)=sum(j=0,k,binomial(k,j)*C(n-j));
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print()); \\ Joerg Arndt, Jan 15 2017
    

Formula

T(n,k) = Sum_{j=0..k} binomial(k,j) * A000108(n-j). - Joerg Arndt, Jan 15 2017
Showing 1-6 of 6 results.