cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A180662 The Golden Triangle: T(n,k) = A001654(k) for n>=0 and 0<=k<=n.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 2, 6, 0, 1, 2, 6, 15, 0, 1, 2, 6, 15, 40, 0, 1, 2, 6, 15, 40, 104, 0, 1, 2, 6, 15, 40, 104, 273, 0, 1, 2, 6, 15, 40, 104, 273, 714, 0, 1, 2, 6, 15, 40, 104, 273, 714, 1870, 0, 1, 2, 6, 15, 40, 104, 273, 714, 1870, 4895
Offset: 0

Views

Author

Johannes W. Meijer, Sep 21 2010

Keywords

Comments

The terms in the n-th row of the Golden Triangle are the first (n+1) golden rectangle numbers. The golden rectangle numbers are A001654(n)=F(n)*F(n+1), with F(n) the Fibonacci numbers. The mirror image of the Golden Triangle is A180663.
We define below 24 mostly new triangle sums. The Row1 and Row2 sums are the ordinary and alternating row sums respectively and the Kn11 and Kn12 sums are commonly known as antidiagonal sums. Each of the names of these sums, except for the row sums, comes from a (fairy) chess piece that moves in its own peculiar way over a chessboard, see Hooper and Whyld. All pieces are leapers: knight (sqrt(5) or 1,2), fil (sqrt(8) or 2,2), camel (sqrt(10) or 3,1), giraffe (sqrt(17) or 4,1) and zebra (sqrt(13) or 3,2). Information about the origin of these chess sums can be found in "Famous numbers on a chessboard", see Meijer.
Each triangle or chess sum formula adds up numbers on a chessboard using the moves of its namesake. Converting a number triangle to a square array of numbers shows this most clearly (use the table button!). The formulas given below are for number triangles.
The chess sums of the Golden Triangle lead to six different sequences, see the crossrefs. As could be expected all these sums are related to the golden rectangle numbers.
Some triangles with complete sets of triangle sums are: A002260 (Natural Numbers), A007318 (Pascal), A008288 (Delannoy) A013609 (Pell-Jacobsthal), A036561 (Nicomachus), A104763 (Fibonacci(n)), A158405 (Odd Numbers) and of course A180662 (Golden Triangle).
#..Name....Type..Code....Definition of triangle sums.
1. Row......1....Row1.. a(n) = Sum_{k=0..n} T(n, k).
2. Row Alt..2....Row2.. a(n) = Sum_{k=0..n} (-1)^(n+k)*T(n, k).
3. Knight...1....Kn11.. a(n) = Sum_{k=0..floor(n/2)} T(n-k, k).
4. Knight...1....Kn12.. a(n) = Sum_{k=0..floor(n/2)} T(n-k+1, k+1).
5. Knight...1....Kn13.. a(n) = Sum_{k=0..floor(n/2)} T(n-k+2, k+2).
6. Knight...2....Kn21.. a(n) = Sum_{k=0..floor(n/2)} T(n-k, n-2*k).
7. Knight...2....Kn22.. a(n) = Sum_{k=0..floor(n/2)} T(n-k+1, n-2*k).
8. Knight...2....Kn23.. a(n) = Sum_{k=0..floor(n/2)} T(n-k+2, n-2*k).
9. Knight...3....Kn3... a(n) = Sum_{k=0..n} T(n+k, 2*k).
10. Knight...4....Kn4... a(n) = Sum_{k=0..n} T(n+k, n-k).
11. Fil......1....Fi1... a(n) = Sum_{k=0..floor(n/2)} T(n, 2*k).
12. Fil......2....Fi2... a(n) = Sum_{k=0..floor(n/2)} T(n, n-2*k).
13. Camel....1....Ca1... a(n) = Sum_{k=0..floor(n/3)} T(n-2*k, k).
14. Camel....2....Ca2... a(n) = Sum_{k=0..floor(n/3)} T(n-2*k, n-3*k).
15. Camel....3....Ca3... a(n) = Sum_{k=0..n} T(n+2*k, 3*k).
16. Camel....4....Ca4... a(n) = Sum_{k=0..n} T(n+2*k, n-k).
17. Giraffe..1....Gi1... a(n) = Sum_{k=0..floor(n/4)} T(n-3*k, k).
18. Giraffe..2....Gi2... a(n) = Sum_{k=0..floor(n/4)} T(n-3*k, n-4*k).
19. Giraffe..3....Gi3... a(n) = Sum_{k=0..n} T(n+3*k, 4*k).
20. Giraffe..4....Gi4... a(n) = Sum_{k=0..n} T(n+3*k, n-k).
21. Zebra....1....Ze1... a(n) = Sum_{k=0..floor(n/2)} T(n+k, 3*k).
22. Zebra....2....Ze2... a(n) = Sum_{k=0..floor(n/2)} T(n+k, n-2*k).
23. Zebra....3....Ze3... a(n) = Sum_{k=0..floor(n/3)} T(n-k, 2*k).
24. Zebra....4....Ze4... a(n) = Sum_{k=0..floor(n/3)} T(n-k, n-3*k).

Examples

			The first few rows of the Golden Triangle are:
  0;
  0, 1;
  0, 1, 2;
  0, 1, 2, 6;
  0, 1, 2, 6, 15;
  0, 1, 2, 6, 15, 40;
		

References

  • David Hooper and Kenneth Whyld, The Oxford Companion to Chess, p. 221, 1992.

Crossrefs

Cf. A180663 (Mirror), A001654 (Golden Rectangle), A000045 (F(n)).
Triangle sums: A064831 (Row1, Kn11, Kn12, Kn4, Ca1, Ca4, Gi1, Gi4), A077916 (Row2), A180664 (Kn13), A180665 (Kn21, Kn22, Kn23, Fi2, Ze2), A180665(2*n) (Kn3, Fi1, Ze3), A115730(n+1) (Ca2, Ze4), A115730(3*n+1) (Ca3, Ze1), A180666 (Gi2), A180666(4*n) (Gi3).

Programs

  • Haskell
    import Data.List (inits)
    a180662 n k = a180662_tabl !! n !! k
    a180662_row n = a180662_tabl !! n
    a180662_tabl = tail $ inits a001654_list
    -- Reinhard Zumkeller, Jun 08 2013
    
  • Magma
    [Fibonacci(k)*Fibonacci(k+1): k in [0..n], n in [0..12]]; // G. C. Greubel, May 25 2021
    
  • Maple
    F:= combinat[fibonacci]:
    T:= (n, k)-> F(k)*F(k+1):
    seq(seq(T(n, k), k=0..n), n=0..10); # revised Johannes W. Meijer, Sep 13 2012
  • Mathematica
    Table[Times @@ Fibonacci@ {k, k + 1}, {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Aug 18 2016 *)
    Module[{nn=20,f},f=Times@@@Partition[Fibonacci[Range[0,nn]],2,1];Table[Take[f,n],{n,nn}]]//Flatten (* Harvey P. Dale, Nov 26 2022 *)
  • PARI
    T(n,k)=fibonacci(k)*fibonacci(k+1) \\ Charles R Greathouse IV, Nov 07 2016
    
  • Sage
    flatten([[fibonacci(k)*fibonacci(k+1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 25 2021

Formula

T(n, k) = F(k)*F(k+1) with F(n) = A000045(n), for n>=0 and 0<=k<=n.
From Johannes W. Meijer, Jun 22 2015: (Start)
Kn1p(n) = Sum_{k=0..floor(n/2)} T(n-k+p-1, k+p-1), p >= 1.
Kn1p(n) = Kn11(n+2*p-2) - Sum_{k=0..p-2} T(n-k+2*p-2, k), p >= 2.
Kn2p(n) = Sum_{k=0..floor(n/2)} T(n-k+p-1, n-2*k), p >= 1.
Kn2p(n) = Kn21(n+2*p-2) - Sum_{k=0..p-2} T(n+k+p, n+2*k+2), p >= 2. (End)
G.f. as triangle: xy/((1-x)(1+xy)(1-3xy+x^2 y^2)). - Robert Israel, Sep 06 2015

A002571 From a definite integral.

Original entry on oeis.org

1, 5, 10, 30, 74, 199, 515, 1355, 3540, 9276, 24276, 63565, 166405, 435665, 1140574, 2986074, 7817630, 20466835, 53582855, 140281751, 367262376, 961505400, 2517253800, 6590256025, 17253514249, 45170286749, 118257345970
Offset: 1

Views

Author

Keywords

Comments

a(n) are the row sums of the elements of the Golden Triangle (A180662) with alternating signs. - Alexander Adamchuk, Oct 18 2010
Limit_{n->oo} A002570(n)/A002571(n) = 1/sqrt(5). - Sean A. Irvine, Apr 09 2014

Examples

			From _Paul D. Hanna_, Feb 20 2009: (Start)
G.f.: A(x) = x + 5*x^2 + 10*x^3 + 30*x^4 + 74*x^5 + 199*x^6 + ...
log(1+A(x)) = x + 3^2*x^2/2 + 4^2*x^3/3 + 7^2*x^4/4 + 11^2*x^5/5 + ... (End)
G.f.: A(x) = -1 + 1/((1-x-x^2) * (1-3*x^2+x^4) * (1-4*x^3-x^6) * (1-7*x^4+x^8) * (1-11*x^5-x^10)^2 * (1-18*x^6+x^12)^2 * (1-29*x^7-x^14)^4 * (1-47*x^8+x^16)^5 * (1-76*x^9-x^18)^8 * ...* (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^A006206(n) * ...). - _Paul D. Hanna_, Jan 07 2012
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001654, A180662 - The Golden Triangle. - Alexander Adamchuk, Oct 18 2010

Programs

  • Maple
    A002571:=-(-1-4*z-z**2+z**3)/(z**2-3*z+1)/(1+z)**2; # conjectured (probably correctly) by Simon Plouffe in his 1992 dissertation
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,(fibonacci(m+1)+fibonacci(m-1))^2*x^m/m)+x*O(x^n)),n)} \\ Paul D. Hanna, Feb 20 2009

Formula

Appears to have g.f. x/((1-3x+x^2)*(1+x)^2). - Ralf Stephan, Apr 14 2004
a(n) = (-1)^n*Sum_{i=1..n+1} (-1)^(i+1)*Fibonacci(i)*Fibonacci(i+1). - Alexander Adamchuk, Jun 16 2006
From Paul D. Hanna, Feb 20 2009: (Start)
Given g.f. A(x), then log(1+A(x)) = Sum_{n>=1} A000204(n)^2 * x^n/n where A000204 is the Lucas numbers.
a(n) = (1/n)*(A000204(n)^2 + Sum_{k=1..n-1} A000204(k)^2*a(n-k)) for n>1, with a(1) = 1. (End)
G.f.: -1 + 1/Product_{n>=1} (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^A006206(n), where A006206(n) is the number of aperiodic binary necklaces of length n with no subsequence 00. - Paul D. Hanna, Jan 07 2012
a(n) = 8*a(n-2) - 8*a(n-4) + a(n-6) + 2(-1)^n, n>6. - Sean A. Irvine, Apr 09 2014
a(n) - a(n-2) = Fibonacci(n+1)^2. - Peter Bala, Aug 30 2015

Extensions

More terms from Max Alekseyev and Alexander Adamchuk, Oct 18 2010

A207969 G.f.: exp( Sum_{n>=1} 5*Fibonacci(n)^4 * x^n/n ).

Original entry on oeis.org

1, 5, 15, 60, 295, 1625, 9430, 56465, 345010, 2139595, 13419500, 84926105, 541398665, 3472389210, 22385362895, 144945232375, 942089445030, 6143582084115, 40181143112035, 263482860974570, 1731780213622125, 11406235045261205, 75268685723935940
Offset: 0

Views

Author

Paul D. Hanna, Feb 22 2012

Keywords

Comments

Conjecture: exp( Sum_{n>=1} 5*Fibonacci(n)^(2*k) * x^n/n ) is an integer series for integers k>=0.
Note that exp( Sum_{n>=1} 5*Fibonacci(n)^(2*k+1) * x^n/n ) is not an integer series for integers k.
Note that exp( Sum_{n>=1} Fibonacci(n)^(2*k) * x^n/n ) is not an integer series for integers k.

Examples

			G.f.: A(x) = 1 + 5*x + 15*x^2 + 60*x^3 + 295*x^4 + 1625*x^5 + 9430*x^6 +...
such that
log(A(x))/5 = x + x^2/2 + 2^4*x^3/3 + 3^4*x^4/4 + 5^4*x^5/5 + 8^4*x^6/6 + 13^4*x^7/7 +...+ Fibonacci(n)^4*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(k=1,n,5*fibonacci(k)^4*x^k/k)+x*O(x^n)),n)}
    for(n=0,25,print1(a(n),", "))

Formula

The o.g.f. A(x) = 1 + 5*x + 15*x^2 + 60*x^3 + ... is an algebraic function: A(x)^5 = (1 + 3*x + x^2)^4/( (1 - 7*x + x^2)*(1 - 2*x + x^2)^3 ). Cf. A203804. - Peter Bala, Apr 03 2014
a(n) ~ 2^(4/5) * 5^(1/10) * phi^(4*n) / (Gamma(1/5) * 3^(1/5) * n^(4/5)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Oct 18 2020

A103433 a(n) = Sum_{i=1..n} Fibonacci(2i-1)^2.

Original entry on oeis.org

0, 1, 5, 30, 199, 1355, 9276, 63565, 435665, 2986074, 20466835, 140281751, 961505400, 6590256025, 45170286749, 309601751190, 2122041971551, 14544692049635, 99690802375860, 683290924581349, 4683345669693545
Offset: 0

Views

Author

Ralf Stephan, Feb 08 2005

Keywords

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 234.

Crossrefs

Partial sums of A081068. Bisection of A077916.

Programs

Formula

G.f.: x*(1-4*x+x^2) / ((1-7*x+x^2)(1-x)^2).
a(n) = (1/5)*(Fibonacci(4n) + 2n).
a(n) = (floor(5*n*phi) + 4*Fibonacci(4*n))/20, where phi =(1+sqrt(5))/2. - Gary Detlefs, Mar 10 2011
a(n) = (8*(n+2)*(Sum_{k=1..n} 1/(2*k^2 + 6*k + 4)) + Fibonacci(4*n))/5. - Gary Detlefs, Dec 07 2011
a(n) = | Sum_{i=0..2n-1} (-1)^i*F(i)*F(i+1) |, where F(n) = Fibonacci numbers (A000045). - Rigoberto Florez, May 04 2019

A103434 a(n) = Sum_{i=1..n} Fibonacci(2i)^2.

Original entry on oeis.org

0, 1, 10, 74, 515, 3540, 24276, 166405, 1140574, 7817630, 53582855, 367262376, 2517253800, 17253514249, 118257345970, 810547907570, 5555578007051, 38078498141820, 260993908985724, 1788878864758285, 12261158144322310
Offset: 0

Views

Author

Ralf Stephan, Feb 08 2005

Keywords

Crossrefs

Partial sums of A049684.
Bisection of A002571 and |A077916|.
Cf. A000045.

Programs

  • Magma
    [(1/5)*(Fibonacci(4*n+2)-2*n-1): n in [0..50]]; // Vincenzo Librandi, Apr 20 2011
  • Mathematica
    Accumulate[Fibonacci[Range[0,40,2]]^2] (* Harvey P. Dale, Nov 14 2013 *)
    LinearRecurrence[{9, -16, 9, -1},{0, 1, 10, 74},21] (* Ray Chandler, Sep 23 2015 *)

Formula

G.f.: x(1+x) / ((1-7x+x^2)(1-x)^2).
a(n) = (1/5)*(Fibonacci(4n+2) - 2n - 1).
a(n) = Sum_{i=0..2n} (-1)^i*Fibonacci(i)*Fibonacci(i+1). - Rigoberto Florez, May 04 2019

A207970 G.f.: exp( Sum_{n>=1} 5*Fibonacci(n)^6 * x^n/n ).

Original entry on oeis.org

1, 5, 15, 140, 1505, 21875, 319620, 4936985, 77358485, 1236083870, 19982821875, 326511608255, 5379199407890, 89249496596015, 1489580814490755, 24988546214618750, 421055477328447620, 7122346563647277860, 120891417096833214485, 2058225554792946621495
Offset: 0

Views

Author

Paul D. Hanna, Feb 22 2012

Keywords

Comments

Conjecture: exp( Sum_{n>=1} 5*Fibonacci(n)^(2*k) * x^n/n ) is an integer series for integers k >= 0.
Note that exp( Sum_{n>=1} 5*Fibonacci(n)^(2*k+1) * x^n/n ) is not an integer series for integers k.
Note that exp( Sum_{n>=1} Fibonacci(n)^(2*k) * x^n/n ) is not an integer series for integers k.

Examples

			G.f.: A(x) = 1 + 5*x + 15*x^2 + 140*x^3 + 1505*x^4 + 21875*x^5 + 319620*x^6 + ...
such that
log(A(x))/5 = x + x^2/2 + 2^6*x^3/3 + 3^6*x^4/4 + 5^6*x^5/5 + 8^6*x^6/6 + 13^6*x^7/7 + ... + Fibonacci(n)^6*x^n/n + ...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(k=1,n,5*fibonacci(k)^6*x^k/k)+x*O(x^n)),n)}
    for(n=0,31,print1(a(n),", "))

Formula

The o.g.f. A(x) = 1 + 5*x + 15*x^2 + 140*x^3 + ... is an algebraic function: A(x)^25 = ( (1 + 2*x + x^2)^10*(1 + 7*x + x^2)^6 )/( (1 - 3*x + x^2)^15*(1 - 18*x + x^2) ). Cf. A203806. - Peter Bala, Apr 03 2014
a(n) ~ 2^(17/25) * 5^(13/50) * phi^(6*n) / (Gamma(1/25) * 3^(3/5) * n^(24/25)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Oct 18 2020

A180663 Mirror image of the Golden Triangle: T(n,k) = A001654(n-k) for n>=0 and 0<=k<=n.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 6, 2, 1, 0, 15, 6, 2, 1, 0, 40, 15, 6, 2, 1, 0, 104, 40, 15, 6, 2, 1, 0, 273, 104, 40, 15, 6, 2, 1, 0, 714, 273, 104, 40, 15, 6, 2, 1, 0, 1870, 714, 273, 104, 40, 15, 6, 2, 1, 0, 4895, 1870, 714, 273, 104, 40, 15, 6, 2, 1, 0
Offset: 0

Views

Author

Johannes W. Meijer, Sep 21 2010

Keywords

Comments

This triangle is the mirror image of the Golden Triangle A180662. The terms in the n-th row of the triangle are the first (n+1) golden rectangle numbers in reversed order. The golden rectangle numbers are A001654(n)=F(n)*F(n+1), with F(n) the Fibonacci numbers.
The chess sums, see A180662 for their definitions, mirror those of the Golden Triangle: Row1 & Row1; Row 2 & Row2; Kn1 and Kn2; Kn3 and Kn4; Fi1 and Fi2; Ca1 and Ca2; Ca3 and Ca4; Gi1 and Gi2; Gi3 and Gi4; Ze1 and Ze2; Ze3 and Ze4.

Examples

			The first few rows of this triangle are:
0;
1, 0;
2, 1, 0;
6, 2, 1, 0;
15, 6, 2, 1, 0;
40, 15, 6, 2, 1, 0;
		

Crossrefs

Cf. A180662 (Golden Triangle), A001654 (Golden Rectangle numbers), A000045 (F(n)).
The triangle sums lead to: A064831 (Row1, Kn21, Kn22, Kn3, Ca2, Ca3, Gi2, Gi3), A077916 (Row2), A180664 (Kn23), A180665 (Kn11, Kn12, Kn13, Fi1, Ze1), A180665(2*n) (Kn4, Fi2, Ze4), A115730(n+1) (Ca1, Ze3), A115730(3*n+1) (Ca4, Ze2), A180666 (Gi1), A180666(4*n) (Gi4).

Programs

  • Haskell
    a180663 n k = a180663_tabl !! n !! k
    a180663_row n = a180663_tabl !! n
    a180663_tabl = map reverse a180662_tabl
    -- Reinhard Zumkeller, Jun 08 2013
  • Maple
    F:= combinat[fibonacci]:
    T:= (n, k)-> F(n-k)*F(n-k+1):
    seq(seq(T(n,k), k=0..n), n=0..10); # revised Johannes W. Meijer, Sep 13 2012
  • Mathematica
    Module[{nn=20,fb},fb=Times@@@Partition[Fibonacci[Range[0,(nn(nn+1))/2]],2,1];Table[ Reverse[Take[fb,n]],{n,nn}]]//Flatten (* Harvey P. Dale, Jan 30 2023 *)

Formula

T(n,k) = F(n-k)*F(n-k+1) with F(n) = A000045(n), for n>=0 and 0<=k<=n.

A128497 Coefficient table for sums over product of adjacent Chebyshev S-polynomials.

Original entry on oeis.org

1, 0, 1, 2, -2, 1, 0, 5, -4, 1, 3, -8, 12, -6, 1, 0, 14, -28, 23, -8, 1, 4, -20, 58, -68, 38, -10, 1, 0, 30, -108, 171, -136, 57, -12, 1, 5, -40, 188, -382, 405, -240, 80, -14, 1, 0, 55, -308, 781, -1056, 828, -388, 107, -16, 1, 6, -70, 483, -1488, 2488, -2472, 1524, -588, 138, -18, 1, 0, 91, -728, 2678, -5408
Offset: 0

Views

Author

Wolfdieter Lang Apr 04 2007

Keywords

Comments

See A049310 for the coefficient table of Chebyshev's S(n,x)=U(n,x/2) polynomials.
See A128495 for the sums of squares of Chebyshev's S-polynomials.

Examples

			1;
0,1;
2,-2,1;
0,5,-4,1;
3,-8,12,-6,1;
0,14,-28,23,-8,1;
...
		

Crossrefs

Row sums (signed) look like A008620. Row sums (unsigned) look like |A077916|.

Formula

sum(S(k,x)*S(k+1,x)/x,k=0..n)= sum(a(n,m)*x^(2*m),m=0..n).

A214884 a(n) = Sum_{k=0..n} (-1)^k*F(k)*F(k+2), where F=A000045 (Fibonacci numbers).

Original entry on oeis.org

0, -2, 1, -9, 15, -50, 118, -324, 831, -2195, 5725, -15012, 39276, -102854, 269245, -704925, 1845483, -4831574, 12649186, -33116040, 86698875, -226980647, 594243001, -1555748424, 4073002200, -10663258250, 27916772473, -73087059249, 191344405191
Offset: 0

Views

Author

Wolfdieter Lang, Jul 30 2012

Keywords

Comments

The present sequence is the m=2 member of the m-family of sequences b(m,n):=Sum_{k=0..n} (-1)^k*F(k+2)*F(k) given by b(m,n) = (L(m)*A119283(n) + F(m)*(-1)^n*A001654(n))/2, with A119283(n) = b(0,n) = ((-1)^n*F(2*n+1) - (2*n+1))/5 and A001654(n) = F(n+1)*F(n), where F and L are the Fibonacci and Lucas numbers, A000045 and A000032, respectively.
The o.g.f. of b(m,n) is A(m,x) = -(1/2)*x*(F(m+1) + F(m-1)*x)/((1-x)^2*(1+3*x+x^2)), m >= 0, with F(-1) = 1. For the unsigned sums see a comment on A080144.
b(m, n) = ((-1)^n*F(m + 2*n + 1) - n*L(m) - F(m + 1))/5. - Ehren Metcalfe, Aug 21 2017

Crossrefs

Cf. A119283, -A077916(n-1) for the m=0 and m=1 cases. A214885 for m=3.

Programs

  • Mathematica
    Table[Sum[(-1)^k*Fibonacci[k]*Fibonacci[k + 2], {k, 0, n}], {n, 0, 28}] (* Michael De Vlieger, Aug 23 2017 *)

Formula

a(n) = b(2,n) = (3*A119283(n) + (-1)^n*A001654(n))/2, n >= 0.
O.g.f.: -x*(2+x)/((1-x)^2*(1+3*x+x^2)) (see the comment section).
a(n) = ((-1)^n*Fibonacci(2*n + 3) - 3*n - 2)/5. - Ehren Metcalfe, Aug 21 2017

A214885 a(n) = Sum_{k=0..n} (-1)^k*F(k)*F(k+3), where F=A000045 (Fibonacci numbers).

Original entry on oeis.org

0, -3, 2, -14, 25, -80, 192, -523, 1346, -3550, 9265, -24288, 63552, -166419, 435650, -1140590, 2986057, -7817648, 20466816, -53582875, 140281730, -367262398, 961505377, -2517253824, 6590256000, -17253514275, 45170286722, -118257345998
Offset: 0

Views

Author

Wolfdieter Lang, Jul 30 2012

Keywords

Comments

This is the m=3 member of the m-family b(m,n) given in a comment on A214884, where also the formula and the o.g.f. are found.

Crossrefs

Cf. A119283, -A077916(n-1), A214884.

Programs

  • Mathematica
    Table[Sum[(-1)^k*Fibonacci[k]*Fibonacci[k + 3], {k, 0, n}], {n, 0, 27}] (* Michael De Vlieger, Aug 23 2017 *)

Formula

a(n) = b(3,n) = 2*A119283(n) + (-1)^n*A001654(n), n >= 0.
O.g.f.: A(3,x) = -x*(3+x)/((1-x)^2*(1+3*x+x^2)). See the comment above.
a(n) = ((-1)^n*Fibonacci(2*n + 4) - 4*n - 3)/5. - Ehren Metcalfe, Aug 21 2017
Showing 1-10 of 10 results.