cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A077916 Expansion of (1-x)^(-1)/(1 + 2*x - 2*x^2 - x^3).

Original entry on oeis.org

1, -1, 5, -10, 30, -74, 199, -515, 1355, -3540, 9276, -24276, 63565, -166405, 435665, -1140574, 2986074, -7817630, 20466835, -53582855, 140281751, -367262376, 961505400, -2517253800, 6590256025, -17253514249, 45170286749, -118257345970, 309601751190, -810547907570
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Crossrefs

Cf. A002571.
Bisections are A103433 and A103434.

Programs

  • Mathematica
    a[0] = 1; a[1] = -1; a[2] = 5; a[3] = -10; a[n_] := a[n] = -a[n-1] + 4 a[n-2] - a[n-3] - a[n-4]; Table[a[n], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 28 2015 *)
    CoefficientList[Series[(1 - x)^(-1)/(1 + 2*x - 2*x^2 - x^3), {x, 0, 50}], x] (* G. C. Greubel, Dec 25 2017 *)
    Table[If[OddQ[n], (Fibonacci[2n+2]+n+1)/5, -(Fibonacci[2n+2]-n-1)/5], {n,1,20}] (* Rigoberto Florez, May 09 2019 *)
  • PARI
    Vec((1-x)^(-1)/(1+2*x-2*x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
    
  • PARI
    Vec(1/((1-x)^2*(1+3*x+x^2)) + O(x^100)) \\ Altug Alkan, Oct 28 2015

Formula

a(n-1) = Sum_{i=1..n} (-1)^(i+1)*Fibonacci(i)*Fibonacci(i+1), n >= 1. - Alexander Adamchuk, Jun 16 2006
From R. J. Mathar, Mar 14 2011: (Start)
G.f.: 1/((1-x)^2*(1+3*x+x^2)).
a(n) = ((-1)^n*A001906(n+2)+n+2)/5. (End)
O.g.f.: exp( Sum_{n >= 1} Lucas(n)^2*(-x)^n/n ) = 1 - x + 5*x^2 - 10*x^3 + .... Cf. A203803. See also A207969 and A207970. - Peter Bala, Apr 03 2014
From Vladimir Reshetnikov, Oct 28 2015: (Start)
Recurrence (5-term): a(0) = 1, a(1) = -1, a(2) = 5, a(3) = -10, a(n) = -a(n-1) + 4*a(n-2) - a(n-3) - a(n-4).
Recurrence (4-term): a(0) = 1, a(1) = -1, a(2) = 5, n*a(n) = (1-2*n)*a(n-1) + (3*n+3)*a(n-2) + (n+1)*a(n-3).
(End)
a(n) = (F(2n+2)+n+1)/5 if n is odd and a(n)= -(F(2n+2)-n-1)/5 if n is even, where F(n) = Fibonacci numbers (A000045). - Rigoberto Florez, May 09 2019

A203803 G.f.: exp( Sum_{n>=1} A000204(n)^3 * x^n/n ) where A000204 is the Lucas numbers.

Original entry on oeis.org

1, 1, 14, 35, 205, 744, 3414, 13926, 60060, 252330, 1072902, 4537272, 19234463, 81452015, 345084970, 1461714517, 6192083147, 26229794928, 111111714300, 470675847900, 1993816532280, 8445939457380, 35777578796220, 151556246864400, 642002579853325, 2719566542567917
Offset: 0

Views

Author

Paul D. Hanna, Jan 06 2012

Keywords

Comments

More generally, exp(Sum_{k>=1} A000204(k)^(2*n+1) * x^k/k) = Product_{k=0..n} 1/(1 - (-1)^(n-k)*A000204(2*k+1)*x - x^2)^binomial(2*n+1,n-k).

Examples

			G.f.: A(x) = 1 + x + 14*x^2 + 35*x^3 + 205*x^4 + 744*x^5 + 3414*x^6 +...
where
log(A(x)) = x + 3^3*x^2/2 + 4^3*x^3/3 + 7^3*x^4/4 + 11^3*x^5/5 + 18^3*x^6/6 + 29^3*x^7/7 + 47^3*x^8/8 +...+ Lucas(n)^3*x^n/n +...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/((1 + x - x^2)^3*(1 - 4*x - x^2)), {x, 0, 50}], x] (* G. C. Greubel, Dec 24 2017 *)
  • PARI
    /* Subroutine used in PARI programs below: */
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    
  • PARI
    {a(n)=polcoeff(exp(sum(k=1, n, Lucas(k)^3*x^k/k)+x*O(x^n)), n)}
    
  • PARI
    {a(n,m=1)=polcoeff(prod(k=0,m, 1/(1 - (-1)^(m-k)*Lucas(2*k+1)*x - x^2+x*O(x^n))^binomial(2*m+1,m-k)),n)}

Formula

G.f.: 1/( (1+x-x^2)^3 * (1-4*x-x^2) ).
G.f.: 1/Product_{n>=1} (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^A203853(n) where A203853(n) = (1/n)*Sum_{d|n} moebius(n/d)*Lucas(d)^2.

A203804 G.f.: exp( Sum_{n>=1} A000204(n)^4 * x^n/n ) where A000204 is the Lucas numbers.

Original entry on oeis.org

1, 1, 41, 126, 1526, 7854, 63629, 400789, 2870629, 19254504, 133376760, 909578760, 6249172910, 42785312510, 293403088510, 2010553849020, 13781960765020, 94458627485820, 647442212896270, 4437595353800270, 30415849505902910, 208472981440853160, 1428896115173689560
Offset: 0

Views

Author

Paul D. Hanna, Jan 06 2012

Keywords

Comments

More generally, exp(Sum_{k>=1} A000204(k)^(2*n) * x^k/k) = 1/(1 - (-1)^n*x)^binomial(2*n,n) * Product_{k=1..n} 1/(1 - (-1)^(n-k)*A000204(2*k)*x + x^2)^binomial(2*n,n-k).

Examples

			G.f.: A(x) = 1 + x + 41*x^2 + 126*x^3 + 1526*x^4 + 7854*x^5 + 63629*x^6 +...
where
log(A(x)) = x + 3^4*x^2/2 + 4^4*x^3/3 + 7^4*x^4/4 + 11^4*x^5/5 + 18^4*x^6/6 + 29^4*x^7/7 + 47^4*x^8/8 +...+ Lucas(n)^4*x^n/n +...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/((1 - x)^6*(1 + 3*x + x^2)^4*(1 - 7*x + x^2)), {x, 0, 50}], x] (* G. C. Greubel, Dec 24 2017 *)
  • PARI
    /* Subroutine used in PARI programs below: */
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    
  • PARI
    {a(n)=polcoeff(exp(sum(k=1, n, Lucas(k)^4*x^k/k)+x*O(x^n)), n)}
    
  • PARI
    {a(n,m=2)=polcoeff(1/(1 - (-1)^m*x+x*O(x^n))^binomial(2*m,m) * prod(k=1,m,1/(1 - (-1)^(m-k)*Lucas(2*k)*x + x^2+x*O(x^n))^binomial(2*m,m-k)),n)}

Formula

G.f.: 1/( (1-x)^6 * (1+3*x+x^2)^4 * (1-7*x+x^2) ).
G.f.: 1/Product_{n>=1} (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^A203854(n) where A203854(n) = (1/n)*Sum_{d|n} moebius(n/d)*Lucas(d)^3.

A203806 G.f.: exp( Sum_{n>=1} A000204(n)^6 * x^n/n ) where A000204 is the Lucas numbers.

Original entry on oeis.org

1, 1, 365, 1730, 97390, 948562, 26292937, 370813165, 7716851405, 127699557640, 2397734250216, 42004273130216, 763345960355450, 13608990417046650, 245008471017094450, 4389301146029065420, 78826300825689660420, 1413927351334191841100, 25376664633745265522450
Offset: 0

Views

Author

Paul D. Hanna, Jan 06 2012

Keywords

Comments

More generally, exp(Sum_{k>=1} A000204(k)^(2*n) * x^k/k) = 1/(1 - (-1)^n*x)^binomial(2*n,n) * Product_{k=1..n} 1/(1 - (-1)^(n-k)*A000204(2*k)*x + x^2)^binomial(2*n,n-k).

Examples

			G.f.: A(x) = 1 + x + 365*x^2 + 1730*x^3 + 97390*x^4 + 948562*x^5 + ...
where
log(A(x)) = x + 3^6*x^2/2 + 4^6*x^3/3 + 7^6*x^4/4 + 11^6*x^5/5 + 18^6*x^6/6 + 29^6*x^7/7 + 47^6*x^8/8 + ... + Lucas(n)^6*x^n/n + ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/((1 + x)^20*(1 - 3*x + x^2)^15*(1 + 7*x + x^2)^6*(1 - 18*x + x^2)), {x, 0, 50}], x] (* G. C. Greubel, Dec 25 2017 *)
  • PARI
    /* Subroutine used in PARI programs below: */
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    
  • PARI
    {a(n)=polcoeff(exp(sum(k=1, n, Lucas(k)^6*x^k/k)+x*O(x^n)), n)}
    
  • PARI
    {a(n,m=3)=polcoeff(1/(1 - (-1)^m*x+x*O(x^n))^binomial(2*m,m) * prod(k=1,m,1/(1 - (-1)^(m-k)*Lucas(2*k)*x + x^2+x*O(x^n))^binomial(2*m,m-k)),n)}

Formula

G.f.: 1/( (1+x)^20 * (1-3*x+x^2)^15 * (1+7*x+x^2)^6 * (1-18*x+x^2) ).
G.f.: 1/Product_{n>=1} (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^A203856(n) where A203856(n) = (1/n)*Sum_{d|n} moebius(n/d)*Lucas(d)^5.

A203805 G.f.: exp( Sum_{n>=1} A000204(n)^5 * x^n/n ) where A000204 is the Lucas numbers.

Original entry on oeis.org

1, 1, 122, 463, 11985, 85456, 1262166, 12018742, 145326748, 1540766090, 17495016342, 191731126832, 2138972609189, 23652975370501, 262682339212290, 2911255335387883, 32296421465575573, 358120616523262016, 3971885483375619384, 44047530724737577400
Offset: 0

Views

Author

Paul D. Hanna, Jan 06 2012

Keywords

Comments

More generally, exp(Sum_{k>=1} A000204(k)^(2*n+1) * x^k/k) = Product_{k=0..n} 1/(1 - (-1)^(n-k)*A000204(2*k+1)*x - x^2)^binomial(2*n+1,n-k).

Examples

			G.f.: A(x) = 1 + x + 122*x^2 + 463*x^3 + 11985*x^4 + 85456*x^5 + ...
where
log(A(x)) = x + 3^5*x^2/2 + 4^5*x^3/3 + 7^5*x^4/4 + 11^5*x^5/5 + 18^5*x^6/6 + 29^5*x^7/7 + 47^5*x^8/8 + ... + Lucas(n)^5*x^n/n + ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/((1 - x - x^2)^10*(1 + 4*x - x^2)^5*(1 - 11*x - x^2)), {x, 0, 50}], x] (* G. C. Greubel, Dec 25 2017 *)
  • PARI
    /* Subroutine used in PARI programs below: */
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    
  • PARI
    {a(n)=polcoeff(exp(sum(k=1, n, Lucas(k)^5*x^k/k)+x*O(x^n)), n)}
    
  • PARI
    {a(n,m=2)=polcoeff(prod(k=0,m, 1/(1 - (-1)^(m-k)*Lucas(2*k+1)*x - x^2+x*O(x^n))^binomial(2*m+1,m-k)),n)}

Formula

G.f.: 1/( (1-x-x^2)^10 * (1+4*x-x^2)^5 * (1-11*x-x^2) ).
G.f.: 1/Product_{n>=1} (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^A203855(n) where A203855(n) = (1/n)*Sum_{d|n} moebius(n/d)*Lucas(d)^4.

A203807 G.f.: exp( Sum_{n>=1} A000204(n)^7 * x^n/n ) where A000204 is the Lucas numbers.

Original entry on oeis.org

1, 1, 1094, 6555, 809765, 10676072, 570282082, 11680775298, 427757608420, 10880625876510, 341910837405634, 9500984180929624, 282684350289144641, 8100555748749977985, 236841648715969283630, 6851665210550903756723, 199305150210062939465293
Offset: 0

Views

Author

Paul D. Hanna, Jan 06 2012

Keywords

Comments

More generally, exp(Sum_{k>=1} A000204(k)^(2*n+1) * x^k/k) = Product_{k=0..n} 1/(1 - (-1)^(n-k)*A000204(2*k+1)*x - x^2)^binomial(2*n+1,n-k).

Examples

			G.f.: A(x) = 1 + x + 1094*x^2 + 6555*x^3 + 809765*x^4 + 10676072*x^5 + ...
where
log(A(x)) = x + 3^7*x^2/2 + 4^7*x^3/3 + 7^7*x^4/4 + 11^7*x^5/5 + 18^7*x^6/6 + 29^7*x^7/7 + 47^7*x^8/8 + ... + Lucas(n)^7*x^n/n + ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/((1 + x - x^2)^35*(1 - 4*x - x^2)^21*(1 + 11*x - x^2)^7*(1 - 29*x - x^2)), {x, 0, 50}], x] (* G. C. Greubel, Dec 25 2017 *)
  • PARI
    /* Subroutine used in PARI programs below: */
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    
  • PARI
    {a(n)=polcoeff(exp(sum(k=1, n, Lucas(k)^7*x^k/k)+x*O(x^n)), n)}
    
  • PARI
    {a(n,m=3)=polcoeff(prod(k=0,m, 1/(1 - (-1)^(m-k)*Lucas(2*k+1)*x - x^2+x*O(x^n))^binomial(2*m+1,m-k)),n)}

Formula

G.f.: 1/( (1+x-x^2)^35 * (1-4*x-x^2)^21 * (1+11*x-x^2)^7 * (1-29*x-x^2) ).
G.f.: 1/Product_{n>=1} (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^A203857(n) where A203857(n) = (1/n)*Sum_{d|n} moebius(n/d)*Lucas(d)^6.

A203808 G.f.: exp( Sum_{n>=1} A000204(n)^8 * x^n/n ) where A000204 is the Lucas numbers.

Original entry on oeis.org

1, 1, 3281, 25126, 6845526, 121368902, 12805025677, 373879862237, 24707348223677, 948781359159752, 50702478932197928, 2210812262034197128, 108528095366637700218, 4974402150387759436378, 236926456045384849970778, 11047772769135934828000404
Offset: 0

Views

Author

Paul D. Hanna, Jan 06 2012

Keywords

Comments

More generally, exp(Sum_{k>=1} A000204(k)^(2*n) * x^k/k) = 1/(1 - (-1)^n*x)^binomial(2*n,n) * Product_{k=1..n} 1/(1 - (-1)^(n-k)*A000204(2*k)*x + x^2)^binomial(2*n,n-k).

Examples

			G.f.: A(x) = 1 + x + 3281*x^2 + 25126*x^3 + 6845526*x^4 + 121368902*x^5 + ...
where
log(A(x)) = x + 3^8*x^2/2 + 4^8*x^3/3 + 7^8*x^4/4 + 11^8*x^5/5 + 18^8*x^6/6 + 29^8*x^7/7 + 47^8*x^8/8 + ... + Lucas(n)^8*x^n/n + ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/((1 - x)^70*(1 + 3*x + x^2)^56*(1 - 7*x + x^2)^28*(1 + 18*x + x^2)^8*(1 - 47*x + x^2)), {x, 0, 50}], x] (* G. C. Greubel, Dec 25 2017 *)
  • PARI
    /* Subroutine used in PARI programs below: */
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    
  • PARI
    {a(n)=polcoeff(exp(sum(k=1, n, Lucas(k)^8*x^k/k)+x*O(x^n)), n)}
    
  • PARI
    {a(n,m=4)=polcoeff(1/(1 - (-1)^m*x+x*O(x^n))^binomial(2*m,m) * prod(k=1,m,1/(1 - (-1)^(m-k)*Lucas(2*k)*x + x^2+x*O(x^n))^binomial(2*m,m-k)),n)}

Formula

G.f.: 1/( (1-x)^70 * (1+3*x+x^2)^56 * (1-7*x+x^2)^28 * (1+18*x+x^2)^8 * (1-47*x+x^2) ).
G.f.: 1/Product_{n>=1} (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^A203858(n) where A203858(n) = (1/n)*Sum_{d|n} moebius(n/d)*Lucas(d)^7.

A203809 G.f.: exp( Sum_{n>=1} A000204(n)^9 * x^n/n ) where A000204 is the Lucas numbers.

Original entry on oeis.org

1, 1, 9842, 97223, 58608265, 1390114224, 296390076414, 12122505505998, 1486321234837932, 84428445979241330, 7833461016478812734, 528228569507280147664, 43275470600883540869733, 3148637876123977595284117, 245565185017744596492591850
Offset: 0

Views

Author

Paul D. Hanna, Jan 06 2012

Keywords

Comments

More generally, exp(Sum_{k>=1} A000204(k)^(2*n+1) * x^k/k) = Product_{k=0..n} 1/(1 - (-1)^(n-k)*A000204(2*k+1)*x - x^2)^binomial(2*n+1,n-k).

Examples

			G.f.: A(x) = 1 + x + 9842*x^2 + 97223*x^3 + 58608265*x^4 + 1390114224*x^5 + ...
where
log(A(x)) = x + 3^9*x^2/2 + 4^9*x^3/3 + 7^9*x^4/4 + 11^9*x^5/5 + 18^9*x^6/6 + 29^9*x^7/7 + 47^9*x^8/8 + ... + Lucas(n)^9*x^n/n + ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/((1 - x - x^2)^126*(1 + 4*x - x^2)^84*(1 - 11*x - x^2)^36*(1 + 29*x - x^2)^9*(1 - 76*x - x^2)), {x, 0, 50}], x] (* G. C. Greubel, Dec 25 2017 *)
  • PARI
    /* Subroutine used in PARI programs below: */
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    
  • PARI
    {a(n)=polcoeff(exp(sum(k=1, n, Lucas(k)^9*x^k/k)+x*O(x^n)), n)}
    
  • PARI
    {a(n,m=4)=polcoeff(prod(k=0,m, 1/(1 - (-1)^(m-k)*Lucas(2*k+1)*x - x^2+x*O(x^n))^binomial(2*m+1,m-k)),n)}

Formula

G.f.: 1/( (1-x-x^2)^126 * (1+4*x-x^2)^84 * (1-11*x-x^2)^36 * (1+29*x-x^2)^9 * (1-76*x-x^2) ).
G.f.: 1/Product_{n>=1} (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^A203859(n) where A203859(n) = (1/n)*Sum_{d|n} moebius(n/d)*Lucas(d)^8.

A103434 a(n) = Sum_{i=1..n} Fibonacci(2i)^2.

Original entry on oeis.org

0, 1, 10, 74, 515, 3540, 24276, 166405, 1140574, 7817630, 53582855, 367262376, 2517253800, 17253514249, 118257345970, 810547907570, 5555578007051, 38078498141820, 260993908985724, 1788878864758285, 12261158144322310
Offset: 0

Views

Author

Ralf Stephan, Feb 08 2005

Keywords

Crossrefs

Partial sums of A049684.
Bisection of A002571 and |A077916|.
Cf. A000045.

Programs

  • Magma
    [(1/5)*(Fibonacci(4*n+2)-2*n-1): n in [0..50]]; // Vincenzo Librandi, Apr 20 2011
  • Mathematica
    Accumulate[Fibonacci[Range[0,40,2]]^2] (* Harvey P. Dale, Nov 14 2013 *)
    LinearRecurrence[{9, -16, 9, -1},{0, 1, 10, 74},21] (* Ray Chandler, Sep 23 2015 *)

Formula

G.f.: x(1+x) / ((1-7x+x^2)(1-x)^2).
a(n) = (1/5)*(Fibonacci(4n+2) - 2n - 1).
a(n) = Sum_{i=0..2n} (-1)^i*Fibonacci(i)*Fibonacci(i+1). - Rigoberto Florez, May 04 2019

A002570 From a definite integral.

Original entry on oeis.org

1, 1, 6, 11, 36, 85, 235, 600, 1590, 4140, 10866, 28416, 74431, 194821, 510096, 1335395, 3496170, 9153025, 23963005, 62735880, 164244756, 429998256, 1125750156, 2947252056, 7716006181, 20200766305, 52886292930, 138458112275, 362488044120
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    A002570:=-1/(z-1)/(z**2-3*z+1)/(1+z)**3; # conjectured by Simon Plouffe in his 1992 dissertation

Formula

a(n) = a(n-2) + A002571(n-1), n > 2. - Sean A. Irvine, Apr 09 2014
a(2*n-2) = Sum_{k=0..n} k*Fibonacci(2*n-2*k), n > 1. - Greg Dresden, Dec 02 2021

Extensions

More terms from Sean A. Irvine, Apr 09 2014
Showing 1-10 of 10 results.