A077916
Expansion of (1-x)^(-1)/(1 + 2*x - 2*x^2 - x^3).
Original entry on oeis.org
1, -1, 5, -10, 30, -74, 199, -515, 1355, -3540, 9276, -24276, 63565, -166405, 435665, -1140574, 2986074, -7817630, 20466835, -53582855, 140281751, -367262376, 961505400, -2517253800, 6590256025, -17253514249, 45170286749, -118257345970, 309601751190, -810547907570
Offset: 0
-
a[0] = 1; a[1] = -1; a[2] = 5; a[3] = -10; a[n_] := a[n] = -a[n-1] + 4 a[n-2] - a[n-3] - a[n-4]; Table[a[n], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 28 2015 *)
CoefficientList[Series[(1 - x)^(-1)/(1 + 2*x - 2*x^2 - x^3), {x, 0, 50}], x] (* G. C. Greubel, Dec 25 2017 *)
Table[If[OddQ[n], (Fibonacci[2n+2]+n+1)/5, -(Fibonacci[2n+2]-n-1)/5], {n,1,20}] (* Rigoberto Florez, May 09 2019 *)
-
Vec((1-x)^(-1)/(1+2*x-2*x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
-
Vec(1/((1-x)^2*(1+3*x+x^2)) + O(x^100)) \\ Altug Alkan, Oct 28 2015
A203803
G.f.: exp( Sum_{n>=1} A000204(n)^3 * x^n/n ) where A000204 is the Lucas numbers.
Original entry on oeis.org
1, 1, 14, 35, 205, 744, 3414, 13926, 60060, 252330, 1072902, 4537272, 19234463, 81452015, 345084970, 1461714517, 6192083147, 26229794928, 111111714300, 470675847900, 1993816532280, 8445939457380, 35777578796220, 151556246864400, 642002579853325, 2719566542567917
Offset: 0
G.f.: A(x) = 1 + x + 14*x^2 + 35*x^3 + 205*x^4 + 744*x^5 + 3414*x^6 +...
where
log(A(x)) = x + 3^3*x^2/2 + 4^3*x^3/3 + 7^3*x^4/4 + 11^3*x^5/5 + 18^3*x^6/6 + 29^3*x^7/7 + 47^3*x^8/8 +...+ Lucas(n)^3*x^n/n +...
- G. C. Greubel, Table of n, a(n) for n = 0..1500
- Index entries for linear recurrences with constant coefficients, signature (1,13,8,-20,-8,13,-1,-1).
-
CoefficientList[Series[1/((1 + x - x^2)^3*(1 - 4*x - x^2)), {x, 0, 50}], x] (* G. C. Greubel, Dec 24 2017 *)
-
/* Subroutine used in PARI programs below: */
{Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
-
{a(n)=polcoeff(exp(sum(k=1, n, Lucas(k)^3*x^k/k)+x*O(x^n)), n)}
-
{a(n,m=1)=polcoeff(prod(k=0,m, 1/(1 - (-1)^(m-k)*Lucas(2*k+1)*x - x^2+x*O(x^n))^binomial(2*m+1,m-k)),n)}
A203804
G.f.: exp( Sum_{n>=1} A000204(n)^4 * x^n/n ) where A000204 is the Lucas numbers.
Original entry on oeis.org
1, 1, 41, 126, 1526, 7854, 63629, 400789, 2870629, 19254504, 133376760, 909578760, 6249172910, 42785312510, 293403088510, 2010553849020, 13781960765020, 94458627485820, 647442212896270, 4437595353800270, 30415849505902910, 208472981440853160, 1428896115173689560
Offset: 0
G.f.: A(x) = 1 + x + 41*x^2 + 126*x^3 + 1526*x^4 + 7854*x^5 + 63629*x^6 +...
where
log(A(x)) = x + 3^4*x^2/2 + 4^4*x^3/3 + 7^4*x^4/4 + 11^4*x^5/5 + 18^4*x^6/6 + 29^4*x^7/7 + 47^4*x^8/8 +...+ Lucas(n)^4*x^n/n +...
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,40,45,-285,-272,1022,370,-1840,370,1022,-272,-285,45,40,1,-1).
-
CoefficientList[Series[1/((1 - x)^6*(1 + 3*x + x^2)^4*(1 - 7*x + x^2)), {x, 0, 50}], x] (* G. C. Greubel, Dec 24 2017 *)
-
/* Subroutine used in PARI programs below: */
{Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
-
{a(n)=polcoeff(exp(sum(k=1, n, Lucas(k)^4*x^k/k)+x*O(x^n)), n)}
-
{a(n,m=2)=polcoeff(1/(1 - (-1)^m*x+x*O(x^n))^binomial(2*m,m) * prod(k=1,m,1/(1 - (-1)^(m-k)*Lucas(2*k)*x + x^2+x*O(x^n))^binomial(2*m,m-k)),n)}
A203806
G.f.: exp( Sum_{n>=1} A000204(n)^6 * x^n/n ) where A000204 is the Lucas numbers.
Original entry on oeis.org
1, 1, 365, 1730, 97390, 948562, 26292937, 370813165, 7716851405, 127699557640, 2397734250216, 42004273130216, 763345960355450, 13608990417046650, 245008471017094450, 4389301146029065420, 78826300825689660420, 1413927351334191841100, 25376664633745265522450
Offset: 0
G.f.: A(x) = 1 + x + 365*x^2 + 1730*x^3 + 97390*x^4 + 948562*x^5 + ...
where
log(A(x)) = x + 3^6*x^2/2 + 4^6*x^3/3 + 7^6*x^4/4 + 11^6*x^5/5 + 18^6*x^6/6 + 29^6*x^7/7 + 47^6*x^8/8 + ... + Lucas(n)^6*x^n/n + ...
-
CoefficientList[Series[1/((1 + x)^20*(1 - 3*x + x^2)^15*(1 + 7*x + x^2)^6*(1 - 18*x + x^2)), {x, 0, 50}], x] (* G. C. Greubel, Dec 25 2017 *)
-
/* Subroutine used in PARI programs below: */
{Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
-
{a(n)=polcoeff(exp(sum(k=1, n, Lucas(k)^6*x^k/k)+x*O(x^n)), n)}
-
{a(n,m=3)=polcoeff(1/(1 - (-1)^m*x+x*O(x^n))^binomial(2*m,m) * prod(k=1,m,1/(1 - (-1)^(m-k)*Lucas(2*k)*x + x^2+x*O(x^n))^binomial(2*m,m-k)),n)}
A203805
G.f.: exp( Sum_{n>=1} A000204(n)^5 * x^n/n ) where A000204 is the Lucas numbers.
Original entry on oeis.org
1, 1, 122, 463, 11985, 85456, 1262166, 12018742, 145326748, 1540766090, 17495016342, 191731126832, 2138972609189, 23652975370501, 262682339212290, 2911255335387883, 32296421465575573, 358120616523262016, 3971885483375619384, 44047530724737577400
Offset: 0
G.f.: A(x) = 1 + x + 122*x^2 + 463*x^3 + 11985*x^4 + 85456*x^5 + ...
where
log(A(x)) = x + 3^5*x^2/2 + 4^5*x^3/3 + 7^5*x^4/4 + 11^5*x^5/5 + 18^5*x^6/6 + 29^5*x^7/7 + 47^5*x^8/8 + ... + Lucas(n)^5*x^n/n + ...
- G. C. Greubel, Table of n, a(n) for n = 0..950
- Index entries for linear recurrences with constant coefficients, signature (1,121,220,-3460,-5932,52717,52667,-483925,-81600,2532240,-1172640,-6764090,4911050,11191850,-8809960,-13039640,8809960,11191850,-4911050,-6764090,1172640,2532240,81600,-483925,-52667,52717,5932,-3460,-220,121,-1,-1).
-
CoefficientList[Series[1/((1 - x - x^2)^10*(1 + 4*x - x^2)^5*(1 - 11*x - x^2)), {x, 0, 50}], x] (* G. C. Greubel, Dec 25 2017 *)
-
/* Subroutine used in PARI programs below: */
{Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
-
{a(n)=polcoeff(exp(sum(k=1, n, Lucas(k)^5*x^k/k)+x*O(x^n)), n)}
-
{a(n,m=2)=polcoeff(prod(k=0,m, 1/(1 - (-1)^(m-k)*Lucas(2*k+1)*x - x^2+x*O(x^n))^binomial(2*m+1,m-k)),n)}
A203807
G.f.: exp( Sum_{n>=1} A000204(n)^7 * x^n/n ) where A000204 is the Lucas numbers.
Original entry on oeis.org
1, 1, 1094, 6555, 809765, 10676072, 570282082, 11680775298, 427757608420, 10880625876510, 341910837405634, 9500984180929624, 282684350289144641, 8100555748749977985, 236841648715969283630, 6851665210550903756723, 199305150210062939465293
Offset: 0
G.f.: A(x) = 1 + x + 1094*x^2 + 6555*x^3 + 809765*x^4 + 10676072*x^5 + ...
where
log(A(x)) = x + 3^7*x^2/2 + 4^7*x^3/3 + 7^7*x^4/4 + 11^7*x^5/5 + 18^7*x^6/6 + 29^7*x^7/7 + 47^7*x^8/8 + ... + Lucas(n)^7*x^n/n + ...
-
CoefficientList[Series[1/((1 + x - x^2)^35*(1 - 4*x - x^2)^21*(1 + 11*x - x^2)^7*(1 - 29*x - x^2)), {x, 0, 50}], x] (* G. C. Greubel, Dec 25 2017 *)
-
/* Subroutine used in PARI programs below: */
{Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
-
{a(n)=polcoeff(exp(sum(k=1, n, Lucas(k)^7*x^k/k)+x*O(x^n)), n)}
-
{a(n,m=3)=polcoeff(prod(k=0,m, 1/(1 - (-1)^(m-k)*Lucas(2*k+1)*x - x^2+x*O(x^n))^binomial(2*m+1,m-k)),n)}
A203808
G.f.: exp( Sum_{n>=1} A000204(n)^8 * x^n/n ) where A000204 is the Lucas numbers.
Original entry on oeis.org
1, 1, 3281, 25126, 6845526, 121368902, 12805025677, 373879862237, 24707348223677, 948781359159752, 50702478932197928, 2210812262034197128, 108528095366637700218, 4974402150387759436378, 236926456045384849970778, 11047772769135934828000404
Offset: 0
G.f.: A(x) = 1 + x + 3281*x^2 + 25126*x^3 + 6845526*x^4 + 121368902*x^5 + ...
where
log(A(x)) = x + 3^8*x^2/2 + 4^8*x^3/3 + 7^8*x^4/4 + 11^8*x^5/5 + 18^8*x^6/6 + 29^8*x^7/7 + 47^8*x^8/8 + ... + Lucas(n)^8*x^n/n + ...
-
CoefficientList[Series[1/((1 - x)^70*(1 + 3*x + x^2)^56*(1 - 7*x + x^2)^28*(1 + 18*x + x^2)^8*(1 - 47*x + x^2)), {x, 0, 50}], x] (* G. C. Greubel, Dec 25 2017 *)
-
/* Subroutine used in PARI programs below: */
{Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
-
{a(n)=polcoeff(exp(sum(k=1, n, Lucas(k)^8*x^k/k)+x*O(x^n)), n)}
-
{a(n,m=4)=polcoeff(1/(1 - (-1)^m*x+x*O(x^n))^binomial(2*m,m) * prod(k=1,m,1/(1 - (-1)^(m-k)*Lucas(2*k)*x + x^2+x*O(x^n))^binomial(2*m,m-k)),n)}
A203809
G.f.: exp( Sum_{n>=1} A000204(n)^9 * x^n/n ) where A000204 is the Lucas numbers.
Original entry on oeis.org
1, 1, 9842, 97223, 58608265, 1390114224, 296390076414, 12122505505998, 1486321234837932, 84428445979241330, 7833461016478812734, 528228569507280147664, 43275470600883540869733, 3148637876123977595284117, 245565185017744596492591850
Offset: 0
G.f.: A(x) = 1 + x + 9842*x^2 + 97223*x^3 + 58608265*x^4 + 1390114224*x^5 + ...
where
log(A(x)) = x + 3^9*x^2/2 + 4^9*x^3/3 + 7^9*x^4/4 + 11^9*x^5/5 + 18^9*x^6/6 + 29^9*x^7/7 + 47^9*x^8/8 + ... + Lucas(n)^9*x^n/n + ...
-
CoefficientList[Series[1/((1 - x - x^2)^126*(1 + 4*x - x^2)^84*(1 - 11*x - x^2)^36*(1 + 29*x - x^2)^9*(1 - 76*x - x^2)), {x, 0, 50}], x] (* G. C. Greubel, Dec 25 2017 *)
-
/* Subroutine used in PARI programs below: */
{Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
-
{a(n)=polcoeff(exp(sum(k=1, n, Lucas(k)^9*x^k/k)+x*O(x^n)), n)}
-
{a(n,m=4)=polcoeff(prod(k=0,m, 1/(1 - (-1)^(m-k)*Lucas(2*k+1)*x - x^2+x*O(x^n))^binomial(2*m+1,m-k)),n)}
A103434
a(n) = Sum_{i=1..n} Fibonacci(2i)^2.
Original entry on oeis.org
0, 1, 10, 74, 515, 3540, 24276, 166405, 1140574, 7817630, 53582855, 367262376, 2517253800, 17253514249, 118257345970, 810547907570, 5555578007051, 38078498141820, 260993908985724, 1788878864758285, 12261158144322310
Offset: 0
-
[(1/5)*(Fibonacci(4*n+2)-2*n-1): n in [0..50]]; // Vincenzo Librandi, Apr 20 2011
-
Accumulate[Fibonacci[Range[0,40,2]]^2] (* Harvey P. Dale, Nov 14 2013 *)
LinearRecurrence[{9, -16, 9, -1},{0, 1, 10, 74},21] (* Ray Chandler, Sep 23 2015 *)
A002570
From a definite integral.
Original entry on oeis.org
1, 1, 6, 11, 36, 85, 235, 600, 1590, 4140, 10866, 28416, 74431, 194821, 510096, 1335395, 3496170, 9153025, 23963005, 62735880, 164244756, 429998256, 1125750156, 2947252056, 7716006181, 20200766305, 52886292930, 138458112275, 362488044120
Offset: 1
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- L. R. Shenton, A determinantal expansion for a class of definite integral. Part 5. Recurrence relations, Proc. Edinburgh Math. Soc. (2) 10 (1957), 167-188.
- L. R. Shenton and K. O. Bowman, Second order continued fractions and Fibonacci numbers, Far East Journal of Applied Mathematics, 20(1), 17-31, 2005.
Showing 1-10 of 10 results.
Comments