A203800
a(n) = (1/n) * Sum_{d|n} moebius(n/d) * Lucas(d)^(d-1), where Lucas(n) = A000032(n).
Original entry on oeis.org
1, 1, 5, 85, 2928, 314925, 84974760, 63327890015, 123670531939440, 644385861467631972, 8853970669063185618000, 321538767413685546538468385, 30768712746239178236068160093280, 7755868453482819803691622493685140880, 5144106193113274410507722020733942141881664
Offset: 1
G.f.: F(x) = 1/((1-x-x^2) * (1-3*x^2+x^4) * (1-4*x^3-x^6)^5 * (1-7*x^4+x^8)^85 * (1-11*x^5-x^10)^2928 * (1-18*x^6+x^12)^314925 * (1-29*x^7-x^14)^84974760 * (1-47*x^8+x^16)^63327890015 * (1-76*x^9-x^18)^123670531939440 *...).
where F(x) = exp( Sum_{n>=1} Lucas(n)^n * x^n/n ) = g.f. of A156216:
F(x) = 1 + x + 5*x^2 + 26*x^3 + 634*x^4 + 32928*x^5 + 5704263*x^6 +...
so that the logarithm of F(x) begins:
log(F(x)) = x + 3^2*x^2/2 + 4^3*x^3/3 + 7^4*x^4/4 + 11^5*x^5/5 + 18^6*x^6/6 + 29^7*x^7/7 + 47^8*x^8/8 + 76^9*x^9/9 + 123^10*x^10/10 +...+ Lucas(n)^n*x^n +...
-
a[n_] := 1/n DivisorSum[n, MoebiusMu[n/#] LucasL[#]^(#-1)&]; Array[a, 15] (* Jean-François Alcover, Dec 23 2015 *)
-
{a(n)=if(n<1, 0, sumdiv(n, d, moebius(n/d)*(fibonacci(d-1)+fibonacci(d+1))^(d-1))/n)}
-
{Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
{a(n)=local(F=exp(sum(m=1, n, Lucas(m)^m*x^m/m)+x*O(x^n)));if(n==1,1,polcoeff(F*prod(k=1,n-1,(1 - Lucas(k)*x^k + (-1)^k*x^(2*k) +x*O(x^n))^a(k)),n)/Lucas(n))}
A203803
G.f.: exp( Sum_{n>=1} A000204(n)^3 * x^n/n ) where A000204 is the Lucas numbers.
Original entry on oeis.org
1, 1, 14, 35, 205, 744, 3414, 13926, 60060, 252330, 1072902, 4537272, 19234463, 81452015, 345084970, 1461714517, 6192083147, 26229794928, 111111714300, 470675847900, 1993816532280, 8445939457380, 35777578796220, 151556246864400, 642002579853325, 2719566542567917
Offset: 0
G.f.: A(x) = 1 + x + 14*x^2 + 35*x^3 + 205*x^4 + 744*x^5 + 3414*x^6 +...
where
log(A(x)) = x + 3^3*x^2/2 + 4^3*x^3/3 + 7^3*x^4/4 + 11^3*x^5/5 + 18^3*x^6/6 + 29^3*x^7/7 + 47^3*x^8/8 +...+ Lucas(n)^3*x^n/n +...
- G. C. Greubel, Table of n, a(n) for n = 0..1500
- Index entries for linear recurrences with constant coefficients, signature (1,13,8,-20,-8,13,-1,-1).
-
CoefficientList[Series[1/((1 + x - x^2)^3*(1 - 4*x - x^2)), {x, 0, 50}], x] (* G. C. Greubel, Dec 24 2017 *)
-
/* Subroutine used in PARI programs below: */
{Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
-
{a(n)=polcoeff(exp(sum(k=1, n, Lucas(k)^3*x^k/k)+x*O(x^n)), n)}
-
{a(n,m=1)=polcoeff(prod(k=0,m, 1/(1 - (-1)^(m-k)*Lucas(2*k+1)*x - x^2+x*O(x^n))^binomial(2*m+1,m-k)),n)}
A203804
G.f.: exp( Sum_{n>=1} A000204(n)^4 * x^n/n ) where A000204 is the Lucas numbers.
Original entry on oeis.org
1, 1, 41, 126, 1526, 7854, 63629, 400789, 2870629, 19254504, 133376760, 909578760, 6249172910, 42785312510, 293403088510, 2010553849020, 13781960765020, 94458627485820, 647442212896270, 4437595353800270, 30415849505902910, 208472981440853160, 1428896115173689560
Offset: 0
G.f.: A(x) = 1 + x + 41*x^2 + 126*x^3 + 1526*x^4 + 7854*x^5 + 63629*x^6 +...
where
log(A(x)) = x + 3^4*x^2/2 + 4^4*x^3/3 + 7^4*x^4/4 + 11^4*x^5/5 + 18^4*x^6/6 + 29^4*x^7/7 + 47^4*x^8/8 +...+ Lucas(n)^4*x^n/n +...
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,40,45,-285,-272,1022,370,-1840,370,1022,-272,-285,45,40,1,-1).
-
CoefficientList[Series[1/((1 - x)^6*(1 + 3*x + x^2)^4*(1 - 7*x + x^2)), {x, 0, 50}], x] (* G. C. Greubel, Dec 24 2017 *)
-
/* Subroutine used in PARI programs below: */
{Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
-
{a(n)=polcoeff(exp(sum(k=1, n, Lucas(k)^4*x^k/k)+x*O(x^n)), n)}
-
{a(n,m=2)=polcoeff(1/(1 - (-1)^m*x+x*O(x^n))^binomial(2*m,m) * prod(k=1,m,1/(1 - (-1)^(m-k)*Lucas(2*k)*x + x^2+x*O(x^n))^binomial(2*m,m-k)),n)}
A203806
G.f.: exp( Sum_{n>=1} A000204(n)^6 * x^n/n ) where A000204 is the Lucas numbers.
Original entry on oeis.org
1, 1, 365, 1730, 97390, 948562, 26292937, 370813165, 7716851405, 127699557640, 2397734250216, 42004273130216, 763345960355450, 13608990417046650, 245008471017094450, 4389301146029065420, 78826300825689660420, 1413927351334191841100, 25376664633745265522450
Offset: 0
G.f.: A(x) = 1 + x + 365*x^2 + 1730*x^3 + 97390*x^4 + 948562*x^5 + ...
where
log(A(x)) = x + 3^6*x^2/2 + 4^6*x^3/3 + 7^6*x^4/4 + 11^6*x^5/5 + 18^6*x^6/6 + 29^6*x^7/7 + 47^6*x^8/8 + ... + Lucas(n)^6*x^n/n + ...
-
CoefficientList[Series[1/((1 + x)^20*(1 - 3*x + x^2)^15*(1 + 7*x + x^2)^6*(1 - 18*x + x^2)), {x, 0, 50}], x] (* G. C. Greubel, Dec 25 2017 *)
-
/* Subroutine used in PARI programs below: */
{Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
-
{a(n)=polcoeff(exp(sum(k=1, n, Lucas(k)^6*x^k/k)+x*O(x^n)), n)}
-
{a(n,m=3)=polcoeff(1/(1 - (-1)^m*x+x*O(x^n))^binomial(2*m,m) * prod(k=1,m,1/(1 - (-1)^(m-k)*Lucas(2*k)*x + x^2+x*O(x^n))^binomial(2*m,m-k)),n)}
A203805
G.f.: exp( Sum_{n>=1} A000204(n)^5 * x^n/n ) where A000204 is the Lucas numbers.
Original entry on oeis.org
1, 1, 122, 463, 11985, 85456, 1262166, 12018742, 145326748, 1540766090, 17495016342, 191731126832, 2138972609189, 23652975370501, 262682339212290, 2911255335387883, 32296421465575573, 358120616523262016, 3971885483375619384, 44047530724737577400
Offset: 0
G.f.: A(x) = 1 + x + 122*x^2 + 463*x^3 + 11985*x^4 + 85456*x^5 + ...
where
log(A(x)) = x + 3^5*x^2/2 + 4^5*x^3/3 + 7^5*x^4/4 + 11^5*x^5/5 + 18^5*x^6/6 + 29^5*x^7/7 + 47^5*x^8/8 + ... + Lucas(n)^5*x^n/n + ...
- G. C. Greubel, Table of n, a(n) for n = 0..950
- Index entries for linear recurrences with constant coefficients, signature (1,121,220,-3460,-5932,52717,52667,-483925,-81600,2532240,-1172640,-6764090,4911050,11191850,-8809960,-13039640,8809960,11191850,-4911050,-6764090,1172640,2532240,81600,-483925,-52667,52717,5932,-3460,-220,121,-1,-1).
-
CoefficientList[Series[1/((1 - x - x^2)^10*(1 + 4*x - x^2)^5*(1 - 11*x - x^2)), {x, 0, 50}], x] (* G. C. Greubel, Dec 25 2017 *)
-
/* Subroutine used in PARI programs below: */
{Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
-
{a(n)=polcoeff(exp(sum(k=1, n, Lucas(k)^5*x^k/k)+x*O(x^n)), n)}
-
{a(n,m=2)=polcoeff(prod(k=0,m, 1/(1 - (-1)^(m-k)*Lucas(2*k+1)*x - x^2+x*O(x^n))^binomial(2*m+1,m-k)),n)}
A203808
G.f.: exp( Sum_{n>=1} A000204(n)^8 * x^n/n ) where A000204 is the Lucas numbers.
Original entry on oeis.org
1, 1, 3281, 25126, 6845526, 121368902, 12805025677, 373879862237, 24707348223677, 948781359159752, 50702478932197928, 2210812262034197128, 108528095366637700218, 4974402150387759436378, 236926456045384849970778, 11047772769135934828000404
Offset: 0
G.f.: A(x) = 1 + x + 3281*x^2 + 25126*x^3 + 6845526*x^4 + 121368902*x^5 + ...
where
log(A(x)) = x + 3^8*x^2/2 + 4^8*x^3/3 + 7^8*x^4/4 + 11^8*x^5/5 + 18^8*x^6/6 + 29^8*x^7/7 + 47^8*x^8/8 + ... + Lucas(n)^8*x^n/n + ...
-
CoefficientList[Series[1/((1 - x)^70*(1 + 3*x + x^2)^56*(1 - 7*x + x^2)^28*(1 + 18*x + x^2)^8*(1 - 47*x + x^2)), {x, 0, 50}], x] (* G. C. Greubel, Dec 25 2017 *)
-
/* Subroutine used in PARI programs below: */
{Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
-
{a(n)=polcoeff(exp(sum(k=1, n, Lucas(k)^8*x^k/k)+x*O(x^n)), n)}
-
{a(n,m=4)=polcoeff(1/(1 - (-1)^m*x+x*O(x^n))^binomial(2*m,m) * prod(k=1,m,1/(1 - (-1)^(m-k)*Lucas(2*k)*x + x^2+x*O(x^n))^binomial(2*m,m-k)),n)}
A203809
G.f.: exp( Sum_{n>=1} A000204(n)^9 * x^n/n ) where A000204 is the Lucas numbers.
Original entry on oeis.org
1, 1, 9842, 97223, 58608265, 1390114224, 296390076414, 12122505505998, 1486321234837932, 84428445979241330, 7833461016478812734, 528228569507280147664, 43275470600883540869733, 3148637876123977595284117, 245565185017744596492591850
Offset: 0
G.f.: A(x) = 1 + x + 9842*x^2 + 97223*x^3 + 58608265*x^4 + 1390114224*x^5 + ...
where
log(A(x)) = x + 3^9*x^2/2 + 4^9*x^3/3 + 7^9*x^4/4 + 11^9*x^5/5 + 18^9*x^6/6 + 29^9*x^7/7 + 47^9*x^8/8 + ... + Lucas(n)^9*x^n/n + ...
-
CoefficientList[Series[1/((1 - x - x^2)^126*(1 + 4*x - x^2)^84*(1 - 11*x - x^2)^36*(1 + 29*x - x^2)^9*(1 - 76*x - x^2)), {x, 0, 50}], x] (* G. C. Greubel, Dec 25 2017 *)
-
/* Subroutine used in PARI programs below: */
{Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
-
{a(n)=polcoeff(exp(sum(k=1, n, Lucas(k)^9*x^k/k)+x*O(x^n)), n)}
-
{a(n,m=4)=polcoeff(prod(k=0,m, 1/(1 - (-1)^(m-k)*Lucas(2*k+1)*x - x^2+x*O(x^n))^binomial(2*m+1,m-k)),n)}
A203857
a(n) = (1/n) * Sum_{d|n} moebius(n/d) * Lucas(d)^6, where Lucas(n) = A000204(n).
Original entry on oeis.org
1, 364, 1365, 29230, 354312, 5667900, 84974760, 1347387210, 21411102720, 346282421940, 5645803690800, 92886793449030, 1538448587832240, 25635241395476100, 429333683845968552, 7222607529064709670, 121980435560782376760, 2067248664062116147200
Offset: 1
G.f.: F(x) = 1/((1-x-x^2) * (1-3*x^2+x^4)^364 * (1-4*x^3-x^6)^1365 * (1-7*x^4+x^8)^29230 * (1-11*x^5-x^10)^354312 * (1-18*x^6+x^12)^5667900 * ... * (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^a(n) * ...)
where F(x) = exp( Sum_{n>=1} Lucas(n)^7 * x^n/n ) = g.f. of A203807:
F(x) = 1 + x + 1094*x^2 + 6555*x^3 + 809765*x^4 + 10676072*x^5 + ...
where log(F(x)) = x + 3^7*x^2/2 + 4^7*x^3/3 + 7^7*x^4/4 + 11^7*x^5/5 + 18^7*x^6/6 + 29^7*x^7/7 + 47^7*x^8/8 + ... + Lucas(n)^7*x^n/n + ...
-
a[n_] := DivisorSum[n, MoebiusMu[n/#]*LucasL[#]^6&]/n; Array[a, 18] (* Jean-François Alcover, Dec 07 2015 *)
-
{a(n)=if(n<1, 0, sumdiv(n, d, moebius(n/d)*(fibonacci(d-1)+fibonacci(d+1))^6)/n)}
-
{Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
{a(n)=local(F=exp(sum(m=1, n, Lucas(m)^7*x^m/m)+x*O(x^n)));if(n==1,1,polcoeff(F*prod(k=1,n-1,(1 - Lucas(k)*x^k + (-1)^k*x^(2*k) +x*O(x^n))^a(k)),n)/Lucas(n))}
Showing 1-8 of 8 results.
Comments