cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A077916 Expansion of (1-x)^(-1)/(1 + 2*x - 2*x^2 - x^3).

Original entry on oeis.org

1, -1, 5, -10, 30, -74, 199, -515, 1355, -3540, 9276, -24276, 63565, -166405, 435665, -1140574, 2986074, -7817630, 20466835, -53582855, 140281751, -367262376, 961505400, -2517253800, 6590256025, -17253514249, 45170286749, -118257345970, 309601751190, -810547907570
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Crossrefs

Cf. A002571.
Bisections are A103433 and A103434.

Programs

  • Mathematica
    a[0] = 1; a[1] = -1; a[2] = 5; a[3] = -10; a[n_] := a[n] = -a[n-1] + 4 a[n-2] - a[n-3] - a[n-4]; Table[a[n], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 28 2015 *)
    CoefficientList[Series[(1 - x)^(-1)/(1 + 2*x - 2*x^2 - x^3), {x, 0, 50}], x] (* G. C. Greubel, Dec 25 2017 *)
    Table[If[OddQ[n], (Fibonacci[2n+2]+n+1)/5, -(Fibonacci[2n+2]-n-1)/5], {n,1,20}] (* Rigoberto Florez, May 09 2019 *)
  • PARI
    Vec((1-x)^(-1)/(1+2*x-2*x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
    
  • PARI
    Vec(1/((1-x)^2*(1+3*x+x^2)) + O(x^100)) \\ Altug Alkan, Oct 28 2015

Formula

a(n-1) = Sum_{i=1..n} (-1)^(i+1)*Fibonacci(i)*Fibonacci(i+1), n >= 1. - Alexander Adamchuk, Jun 16 2006
From R. J. Mathar, Mar 14 2011: (Start)
G.f.: 1/((1-x)^2*(1+3*x+x^2)).
a(n) = ((-1)^n*A001906(n+2)+n+2)/5. (End)
O.g.f.: exp( Sum_{n >= 1} Lucas(n)^2*(-x)^n/n ) = 1 - x + 5*x^2 - 10*x^3 + .... Cf. A203803. See also A207969 and A207970. - Peter Bala, Apr 03 2014
From Vladimir Reshetnikov, Oct 28 2015: (Start)
Recurrence (5-term): a(0) = 1, a(1) = -1, a(2) = 5, a(3) = -10, a(n) = -a(n-1) + 4*a(n-2) - a(n-3) - a(n-4).
Recurrence (4-term): a(0) = 1, a(1) = -1, a(2) = 5, n*a(n) = (1-2*n)*a(n-1) + (3*n+3)*a(n-2) + (n+1)*a(n-3).
(End)
a(n) = (F(2n+2)+n+1)/5 if n is odd and a(n)= -(F(2n+2)-n-1)/5 if n is even, where F(n) = Fibonacci numbers (A000045). - Rigoberto Florez, May 09 2019

A207969 G.f.: exp( Sum_{n>=1} 5*Fibonacci(n)^4 * x^n/n ).

Original entry on oeis.org

1, 5, 15, 60, 295, 1625, 9430, 56465, 345010, 2139595, 13419500, 84926105, 541398665, 3472389210, 22385362895, 144945232375, 942089445030, 6143582084115, 40181143112035, 263482860974570, 1731780213622125, 11406235045261205, 75268685723935940
Offset: 0

Views

Author

Paul D. Hanna, Feb 22 2012

Keywords

Comments

Conjecture: exp( Sum_{n>=1} 5*Fibonacci(n)^(2*k) * x^n/n ) is an integer series for integers k>=0.
Note that exp( Sum_{n>=1} 5*Fibonacci(n)^(2*k+1) * x^n/n ) is not an integer series for integers k.
Note that exp( Sum_{n>=1} Fibonacci(n)^(2*k) * x^n/n ) is not an integer series for integers k.

Examples

			G.f.: A(x) = 1 + 5*x + 15*x^2 + 60*x^3 + 295*x^4 + 1625*x^5 + 9430*x^6 +...
such that
log(A(x))/5 = x + x^2/2 + 2^4*x^3/3 + 3^4*x^4/4 + 5^4*x^5/5 + 8^4*x^6/6 + 13^4*x^7/7 +...+ Fibonacci(n)^4*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(k=1,n,5*fibonacci(k)^4*x^k/k)+x*O(x^n)),n)}
    for(n=0,25,print1(a(n),", "))

Formula

The o.g.f. A(x) = 1 + 5*x + 15*x^2 + 60*x^3 + ... is an algebraic function: A(x)^5 = (1 + 3*x + x^2)^4/( (1 - 7*x + x^2)*(1 - 2*x + x^2)^3 ). Cf. A203804. - Peter Bala, Apr 03 2014
a(n) ~ 2^(4/5) * 5^(1/10) * phi^(4*n) / (Gamma(1/5) * 3^(1/5) * n^(4/5)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Oct 18 2020

A207972 Expansion of g.f.: exp( Sum_{n>=1} 5*Fibonacci(n^2) * x^n/n ).

Original entry on oeis.org

1, 5, 20, 115, 1665, 82650, 12847310, 5620114060, 6659421195205, 21082748688390045, 177217804775828062850, 3941798437750184226876305, 231505293200405380457355524620, 35848160499603817968830380832049915, 14619744406297572472084577939841875791890
Offset: 0

Views

Author

Paul D. Hanna, Feb 22 2012

Keywords

Comments

Moss and Ward prove that this is an integral sequence. - Peter Bala, Nov 28 2022
Let A(x) be the g.f. for this sequence. Note that the expansion of A(x)^(1/5) = exp( Sum_{n>=1} Fibonacci(n^2) * x^n/n ) does not have integer coefficients.

Examples

			G.f.: A(x) = 1 + 5*x + 20*x^2 + 115*x^3 + 1665*x^4 + 82650*x^5 + ...
such that
log(A(x))/5 = x + 3*x^2/2 + 34*x^3/3 + 987*x^4/4 + 75025*x^5/5 + 14930352*x^6/6 + 7778742049*x^7/7 + ... + Fibonacci(n^2)*x^n/n + ...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(k=1,n,5*fibonacci(k^2)*x^k/k)+x*O(x^n)),n)}
    for(n=0,16,print1(a(n),", "))

A211895 G.f.: exp( Sum_{n>=1} 3 * Jacobsthal(n)^3 * x^n/n ), where Jacobsthal(n) = A001045(n).

Original entry on oeis.org

1, 3, 6, 36, 186, 1254, 8208, 57540, 404619, 2913705, 21146694, 155231256, 1147302756, 8538393900, 63879354096, 480212156664, 3624581868297, 27456690186507, 208644709097070, 1589982296208492, 12147079485362406, 93012131704072698, 713676733469348352
Offset: 0

Views

Author

Paul D. Hanna, Apr 25 2012

Keywords

Comments

Given g.f. A(x), note that A(x)^(1/3) is not an integer series.

Examples

			G.f.: A(x) = 1 + 3*x + 6*x^2 + 36*x^3 + 186*x^4 + 1254*x^5 + 8208*x^6 +...
such that
log(A(x))/3 = x + x^2/2 + 3^3*x^3/3 + 5^3*x^4/4 + 11^3*x^5/5 + 21^3*x^6/6 + 43^3*x^7/7 +...+ Jacobsthal(n)^3*x^n/n +...
Jacobsthal numbers begin:
A001045 = [1,1,3,5,11,21,43,85,171,341,683,1365,2731,5461,10923,...].
		

Crossrefs

Cf. A211893, A211894, A211896, A207970, A001045 (Jacobsthal).

Programs

  • Mathematica
    CoefficientList[Series[((1+x)*(1+4*x)^3/((1-2*x)^3*(1-8*x)))^(1/9), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 24 2012 *)
  • PARI
    {Jacobsthal(n)=polcoeff(x/(1-x-2*x^2+x*O(x^n)),n)}
    {a(n)=polcoeff(exp(sum(k=1, n, 3*Jacobsthal(k)^3*x^k/k)+x*O(x^n)), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=polcoeff(( (1+x)*(1+4*x)^3 / ((1-2*x)^3*(1-8*x)+x*O(x^n)) )^(1/9),n)}

Formula

G.f.: ( (1+x)*(1+4*x)^3 / ((1-2*x)^3*(1-8*x)) )^(1/9).
G.f.: exp( Sum_{n>=1} (2^n - (-1)^n)^3 / 9 * x^n/n ).
Recurrence: n*a(n) = (5*n-2)*a(n-1) + 6*(5*n-12)*a(n-2) - 8*(5*n-12)*a(n-3) - 64*(n-4)*a(n-4). - Vaclav Kotesovec, Oct 24 2012
a(n) ~ 3^(2/9)*8^n/(Gamma(1/9)*n^(8/9)). - Vaclav Kotesovec, Oct 24 2012

A207971 G.f.: exp( Sum_{n>=1} 5*Fibonacci(n)^(2*n) * x^n/n ).

Original entry on oeis.org

1, 5, 15, 140, 8795, 9808325, 57315191130, 2812698182891585, 894119494320160426760, 2048089587570930007354766745, 32079229816919862900907520464756250, 3500720882833094608324749707338857577696205, 2633228648869966875007549667526201212159637714889015
Offset: 0

Views

Author

Paul D. Hanna, Feb 22 2012

Keywords

Comments

Give g.f. A(x), note that A(x)^(1/5) is not an integer series.

Examples

			G.f.: A(x) = 1 + 5*x + 15*x^2 + 140*x^3 + 8795*x^4 + 9808325*x^5 +...
such that
log(A(x))/5 = x + x^2/2 + 2^6*x^3/3 + 3^8*x^4/4 + 5^10*x^5/5 + 8^12*x^6/6 + 13^14*x^7/7 +...+ Fibonacci(n)^(2*n)*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(k=1,n,5*fibonacci(k)^(2*k)*x^k/k)+x*O(x^n)),n)}
    for(n=0,31,print1(a(n),", "))
Showing 1-5 of 5 results.