A211893
G.f.: exp( Sum_{n>=1} 3 * Jacobsthal(n)^n * x^n/n ), where Jacobsthal(n) = A001045(n).
Original entry on oeis.org
1, 3, 6, 36, 561, 98211, 43176384, 116622937722, 1022189210900601, 41675008108242048327, 6377839090284322052067558, 4114890941608928235401688095580, 10460015732506081308723488849683574907, 108482611110966450613465001912856742180485969
Offset: 0
G.f.: A(x) = 1 + 3*x + 6*x^2 + 36*x^3 + 561*x^4 + 98211*x^5 + 43176384*x^6 +...
such that
log(A(x))/3 = x + x^2/2 + 3^3*x^3/3 + 5^4*x^4/4 + 11^5*x^5/5 + 21^6*x^6/6 + 43^7*x^7/7 +...+ Jacobsthal(n)^n*x^n/n +...
Jacobsthal numbers begin:
A001045 = [1,1,3,5,11,21,43,85,171,341,683,1365,2731,5461,10923,...].
-
{Jacobsthal(n)=polcoeff(x/(1-x-2*x^2+x*O(x^n)),n)}
{a(n)=polcoeff(exp(sum(k=1, n, 3*Jacobsthal(k)^k*x^k/k)+x*O(x^n)), n)}
for(n=0, 16, print1(a(n), ", "))
A211892
G.f.: exp( Sum_{n>=1} 3 * Jacobsthal(n^2) * x^n/n ), where Jacobsthal(n) = A001045(n).
Original entry on oeis.org
1, 3, 12, 198, 16962, 6762210, 11473594848, 80455865485692, 2306084412391039038, 268657100633050977422322, 126765866001055606588876061400, 241678197713843578271875740922972788, 1858396158245858742065123341776166504084452
Offset: 0
G.f.: A(x) = 1 + 3*x + 12*x^2 + 198*x^3 + 16962*x^4 + 6762210*x^5 +...
such that
log(A(x))/3 = x + 5*x^2/2 + 171*x^3/3 + 21845*x^4/4 + 11184811*x^5/5 + 22906492245*x^6/6 + 187649984473771*x^7/7 +...+ Jacobsthal(n^2)*x^n/n +...
Jacobsthal numbers begin:
A001045 = [1,1,3,5,11,21,43,85,171,341,683,1365,2731,5461,10923,21845,...].
-
{Jacobsthal(n)=polcoeff(x/(1-x-2*x^2+x*O(x^n)),n)}
{a(n)=polcoeff(exp(sum(k=1, n, 3*Jacobsthal(k^2)*x^k/k)+x*O(x^n)), n)}
for(n=0, 16, print1(a(n), ", "))
A211894
G.f.: exp( Sum_{n>=1} 3 * Jacobsthal(n)^2 * x^n/n ), where Jacobsthal(n) = A001045(n).
Original entry on oeis.org
1, 3, 6, 18, 57, 195, 684, 2460, 8970, 33102, 123204, 461868, 1741410, 6597750, 25099584, 95822928, 366943881, 1408947675, 5422742910, 20915079258, 80820382425, 312839889219, 1212812010804, 4708415402772, 18302630040504, 71230126892088, 277514015733168
Offset: 0
G.f.: A(x) = 1 + 3*x + 6*x^2 + 18*x^3 + 57*x^4 + 195*x^5 + 684*x^6 +...
such that
log(A(x))/3 = x + x^2/2 + 3^2*x^3/3 + 5^2*x^4/4 + 11^2*x^5/5 + 21^2*x^6/6 + 43^2*x^7/7 +...+ Jacobsthal(n)^2*x^n/n +...
Jacobsthal numbers begin:
A001045 = [1,1,3,5,11,21,43,85,171,341,683,1365,2731,5461,10923,...].
-
CoefficientList[Series[(1+2*x)^(2/3) / ((1-x)*(1-4*x))^(1/3), {x, 0, 30}], x] (* Vaclav Kotesovec, Oct 18 2020 *)
-
{Jacobsthal(n)=polcoeff(x/(1-x-2*x^2+x*O(x^n)),n)}
{a(n)=polcoeff(exp(sum(k=1, n, 3*Jacobsthal(k)^2*x^k/k)+x*O(x^n)), n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=polcoeff(((1+2*x)^2/((1-x)*(1-4*x) +x*O(x^n)))^(1/3),n)}
A211896
G.f.: exp( Sum_{n>=1} 3 * Jacobsthal(n)^4 * x^n/n ), where Jacobsthal(n) = A001045(n).
Original entry on oeis.org
1, 3, 6, 90, 723, 10689, 130428, 1862580, 25594611, 368313993, 5289203262, 77279744418, 1134460916361, 16798605635235, 249994099311288, 3740771822960664, 56208829313956998, 847934859174601650, 12834366187138678836, 194855374723972622988, 2966358133685609559042
Offset: 0
G.f.: A(x) = 1 + 3*x + 6*x^2 + 90*x^3 + 723*x^4 + 10689*x^5 + 130428*x^6 +...
such that
log(A(x))/3 = x + x^2/2 + 3^4*x^3/3 + 5^4*x^4/4 + 11^4*x^5/5 + 21^4*x^6/6 + 43^4*x^7/7 +...+ Jacobsthal(n)^4*x^n/n +...
Jacobsthal numbers begin:
A001045 = [1,1,3,5,11,21,43,85,171,341,683,1365,2731,5461,10923,...].
-
{Jacobsthal(n)=polcoeff(x/(1-x-2*x^2+x*O(x^n)),n)}
{a(n)=polcoeff(exp(sum(k=1, n, 3*Jacobsthal(k)^4*x^k/k)+x*O(x^n)), n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=polcoeff(((1+2*x)^4*(1+8*x)^4/((1-x)*(1-4*x)^6*(1-16*x))+x*O(x^n))^(1/27),n)}
Showing 1-4 of 4 results.
Comments