A211895
G.f.: exp( Sum_{n>=1} 3 * Jacobsthal(n)^3 * x^n/n ), where Jacobsthal(n) = A001045(n).
Original entry on oeis.org
1, 3, 6, 36, 186, 1254, 8208, 57540, 404619, 2913705, 21146694, 155231256, 1147302756, 8538393900, 63879354096, 480212156664, 3624581868297, 27456690186507, 208644709097070, 1589982296208492, 12147079485362406, 93012131704072698, 713676733469348352
Offset: 0
G.f.: A(x) = 1 + 3*x + 6*x^2 + 36*x^3 + 186*x^4 + 1254*x^5 + 8208*x^6 +...
such that
log(A(x))/3 = x + x^2/2 + 3^3*x^3/3 + 5^3*x^4/4 + 11^3*x^5/5 + 21^3*x^6/6 + 43^3*x^7/7 +...+ Jacobsthal(n)^3*x^n/n +...
Jacobsthal numbers begin:
A001045 = [1,1,3,5,11,21,43,85,171,341,683,1365,2731,5461,10923,...].
-
CoefficientList[Series[((1+x)*(1+4*x)^3/((1-2*x)^3*(1-8*x)))^(1/9), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 24 2012 *)
-
{Jacobsthal(n)=polcoeff(x/(1-x-2*x^2+x*O(x^n)),n)}
{a(n)=polcoeff(exp(sum(k=1, n, 3*Jacobsthal(k)^3*x^k/k)+x*O(x^n)), n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=polcoeff(( (1+x)*(1+4*x)^3 / ((1-2*x)^3*(1-8*x)+x*O(x^n)) )^(1/9),n)}
A211892
G.f.: exp( Sum_{n>=1} 3 * Jacobsthal(n^2) * x^n/n ), where Jacobsthal(n) = A001045(n).
Original entry on oeis.org
1, 3, 12, 198, 16962, 6762210, 11473594848, 80455865485692, 2306084412391039038, 268657100633050977422322, 126765866001055606588876061400, 241678197713843578271875740922972788, 1858396158245858742065123341776166504084452
Offset: 0
G.f.: A(x) = 1 + 3*x + 12*x^2 + 198*x^3 + 16962*x^4 + 6762210*x^5 +...
such that
log(A(x))/3 = x + 5*x^2/2 + 171*x^3/3 + 21845*x^4/4 + 11184811*x^5/5 + 22906492245*x^6/6 + 187649984473771*x^7/7 +...+ Jacobsthal(n^2)*x^n/n +...
Jacobsthal numbers begin:
A001045 = [1,1,3,5,11,21,43,85,171,341,683,1365,2731,5461,10923,21845,...].
-
{Jacobsthal(n)=polcoeff(x/(1-x-2*x^2+x*O(x^n)),n)}
{a(n)=polcoeff(exp(sum(k=1, n, 3*Jacobsthal(k^2)*x^k/k)+x*O(x^n)), n)}
for(n=0, 16, print1(a(n), ", "))
A211894
G.f.: exp( Sum_{n>=1} 3 * Jacobsthal(n)^2 * x^n/n ), where Jacobsthal(n) = A001045(n).
Original entry on oeis.org
1, 3, 6, 18, 57, 195, 684, 2460, 8970, 33102, 123204, 461868, 1741410, 6597750, 25099584, 95822928, 366943881, 1408947675, 5422742910, 20915079258, 80820382425, 312839889219, 1212812010804, 4708415402772, 18302630040504, 71230126892088, 277514015733168
Offset: 0
G.f.: A(x) = 1 + 3*x + 6*x^2 + 18*x^3 + 57*x^4 + 195*x^5 + 684*x^6 +...
such that
log(A(x))/3 = x + x^2/2 + 3^2*x^3/3 + 5^2*x^4/4 + 11^2*x^5/5 + 21^2*x^6/6 + 43^2*x^7/7 +...+ Jacobsthal(n)^2*x^n/n +...
Jacobsthal numbers begin:
A001045 = [1,1,3,5,11,21,43,85,171,341,683,1365,2731,5461,10923,...].
-
CoefficientList[Series[(1+2*x)^(2/3) / ((1-x)*(1-4*x))^(1/3), {x, 0, 30}], x] (* Vaclav Kotesovec, Oct 18 2020 *)
-
{Jacobsthal(n)=polcoeff(x/(1-x-2*x^2+x*O(x^n)),n)}
{a(n)=polcoeff(exp(sum(k=1, n, 3*Jacobsthal(k)^2*x^k/k)+x*O(x^n)), n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=polcoeff(((1+2*x)^2/((1-x)*(1-4*x) +x*O(x^n)))^(1/3),n)}
A211896
G.f.: exp( Sum_{n>=1} 3 * Jacobsthal(n)^4 * x^n/n ), where Jacobsthal(n) = A001045(n).
Original entry on oeis.org
1, 3, 6, 90, 723, 10689, 130428, 1862580, 25594611, 368313993, 5289203262, 77279744418, 1134460916361, 16798605635235, 249994099311288, 3740771822960664, 56208829313956998, 847934859174601650, 12834366187138678836, 194855374723972622988, 2966358133685609559042
Offset: 0
G.f.: A(x) = 1 + 3*x + 6*x^2 + 90*x^3 + 723*x^4 + 10689*x^5 + 130428*x^6 +...
such that
log(A(x))/3 = x + x^2/2 + 3^4*x^3/3 + 5^4*x^4/4 + 11^4*x^5/5 + 21^4*x^6/6 + 43^4*x^7/7 +...+ Jacobsthal(n)^4*x^n/n +...
Jacobsthal numbers begin:
A001045 = [1,1,3,5,11,21,43,85,171,341,683,1365,2731,5461,10923,...].
-
{Jacobsthal(n)=polcoeff(x/(1-x-2*x^2+x*O(x^n)),n)}
{a(n)=polcoeff(exp(sum(k=1, n, 3*Jacobsthal(k)^4*x^k/k)+x*O(x^n)), n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=polcoeff(((1+2*x)^4*(1+8*x)^4/((1-x)*(1-4*x)^6*(1-16*x))+x*O(x^n))^(1/27),n)}
A231292
a(n) = Jacobsthal(n)^n, where Jacobsthal(n) = A001045(n), for n>=1.
Original entry on oeis.org
1, 1, 27, 625, 161051, 85766121, 271818611107, 2724905250390625, 125015825667824393931, 21259046894411315872085401, 15087863296794400779633937999667, 41840013551409555494294964922119140625, 470091178834036922915254196307625156782873691
Offset: 1
-
Module[{nn=20},#[[1]]^#[[2]]&/@Thread[{Rest[LinearRecurrence[{1,2},{0,1},nn+1]],Range[nn]}]] (* Harvey P. Dale, Jan 17 2022 *)
-
{a(n)=(2^n-(-1)^n)^n/3^n}
for(n=1, 15, print1(a(n), ", "))
Showing 1-5 of 5 results.
Comments